K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 3 2022

a, \(A=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\)Dấu ''='' xảy ra khi x = 1/2 

b, \(B=\left|3x-1\right|-5\ge-5\)Dấu ''='' xảy ra khi x = 1/3 

c, \(C=-\left(2-x\right)^2+5\le5\)Dấu ''='' xảy ra kho x = 2 

d, \(D=\left(x^2-4\right)^2+\left|y-x\right|+3\ge3\)

Dấu ''='' xảy ra khi \(x=y=\pm2\)

e, \(E=\left(x-1\right)^2+\left(x^2-1\right)^4\ge0\)

Dấu ''='' xảy ra khi \(\left\{{}\begin{matrix}\left[{}\begin{matrix}x=1\\x=-1\end{matrix}\right.\\x=1\end{matrix}\right.\Leftrightarrow x=1\)

f, Ta có \(\left(x+3\right)^2+3\ge3\Rightarrow F\le\dfrac{2}{3}\)

Dấu ''='' xảy ra khi x = -3 

11 tháng 3 2022

\(1,A=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\)

Ta có:\(\left(x-\frac{1}{2}\right)^2\ge0\forall x\)\(\Rightarrow\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\)

\(\Rightarrow A\ge\frac{3}{4}\)

Dấu "=: xảy ra \(\Leftrightarrow\left(x-\frac{1}{2}\right)^2=0\Leftrightarrow x-\frac{1}{2}=0\Leftrightarrow x=\frac{1}{2}\)

Vậy GTNN của A là \(\frac{3}{4}\)khi \(x=\frac{1}{2}\)

Các câu còn lại tương tự

7 tháng 9 2016

tui ra x=2015

7 tháng 9 2016

tao cũng nghĩ vậy.con hoa phải không.:)

1 tháng 8 2017

Bài này ko có gì khó đâu, bạn chỉ cần tính bình thường và chú ý dấu đóng mở ngoặc thôi. Chúc bạn học giỏi

8 tháng 9 2016

|2x-1| >/  0 

|2x-1| -5 >/ -5

Vậy GTNN của B là -5.

25 tháng 9 2016

|2x-1|> hoặc bằng 0

|2x-1-5> hoặc bằng -5

dấu bằng xảy ra khi x=3

Vậy Min B là -5 khi x=3

18 tháng 11 2021

a/

Xét tg vuông AHB có

\(\widehat{BAH}+\widehat{ABC}=90^o\)

và tg vuông ABC có

\(\widehat{ACB}+\widehat{ABC}=90^o\)

\(\Rightarrow\widehat{BAH}=\widehat{ACB}\) (1)

Ta có \(AB=\frac{AC}{2};CD=\frac{AC}{2}\Rightarrow AB=CD\) (2)

Từ (1) và (2) \(\Rightarrow\Delta AHB=\Delta CED\) (Hai tg vuông có cạnh huyền và góc nhọn tương ứng bằng nhau)

b/

Ta có

\(DE\perp BC;AH\perp BC\) => DE // AH

\(DA=DC\left(gt\right)\)

\(\Rightarrow EH=EC\) (trong tam giác đường thẳng đi qua trung điểm 1 cạnh và song song với 1 cạnh thì đi qua trung điểm cạnh còn lại)

=> DE là trung tuyến của \(\Delta HDC\) mà DE cũng là đường cao của \(\Delta HDC\)

=> \(\Delta HDC\) cân tại D (trong tg đường cao đồng thời là đường trung tuyến thì tg đó là tg cân)

c/

Xét tg vuông AHC có \(DA=DC\Rightarrow HD=\frac{AC}{2}\) (trung tuyến thuộc cạnh huyền)

\(\Rightarrow AB=HD=\frac{AC}{2}\)(1)

\(\Delta HDC\) cân \(\Rightarrow\widehat{ACB}=\widehat{DHC}\) (góc ở đáy tg cân)

Mà \(\widehat{ACB}=\widehat{BAH}\left(cmt\right)\)

\(\Rightarrow\widehat{DHC}=\widehat{BAH}\) (2)

Từ (1) và (2) \(\Rightarrow\Delta AHB=\Delta HED\) (Hai tg vuông có cạnh huyền và góc nhọn tương ứng bằng nhau)

\(\Rightarrow AH=HE\)

Xét tg vuông ABD có \(IB=ID\left(gt\right)\Rightarrow AI=\frac{BD}{2}\) (trung tuyến thuộc cạnh huyền)

Xét tg vuông BDE có \(IB=ID\left(gt\right)\Rightarrow EI=\frac{BD}{2}\) (trung tuyến thuộc cạnh huyền)

\(\Rightarrow AI=EI=\frac{BD}{2}\)

Xét \(\Delta AHI\) và \(\Delta EHI\) có

\(AH=HE;AI=EI;\)HI chung \(\Rightarrow\Delta AHI=\Delta EHI\left(c.c.c\right)\)

d/

IK//BC \(\Rightarrow\widehat{DIK}=\widehat{DBC}\) (góc đồng vị) (1)

IK//BC \(\Rightarrow\widehat{EIK}=\widehat{IEB}\) (góc so le trong) (2)

Ta có \(BI=DI=\frac{BD}{2}\left(gt\right);EI=\frac{BD}{2}\left(cmt\right)\Rightarrow BI=EI=DI=\frac{BD}{2}\) => \(\Delta IBE\) cân tại I \(\Rightarrow\widehat{DBC}=\widehat{IEB}\) (3)

Từ (1)  (2) và (3)  \(\Rightarrow\widehat{DIK}=\widehat{EIK}\)

Xét \(\Delta IKD\) và \(\Delta IKE\) có

IK chung

DI=EI (cmt)

\(\widehat{DIK}=\widehat{EIK}\left(cmt\right)\)

\(\Rightarrow\Delta IKD=\Delta IKE\left(c.g.c\right)\)

18 tháng 11 2021

bạn có biết làm câu e,f nếu có thì bạn  giúp mình nốt nha

28 tháng 11 2021

ta được số là ~190

7 tháng 2 2020

Kẻ: ID⊥AB,IE⊥BC,IF⊥ACID⊥AB,IE⊥BC,IF⊥AC

Xét hai tam giác vuông IDB và IEB, ta có:

\(\eqalign{

& \widehat {I{\rm{D}}B} = \widehat {IEB} = 90^\circ \cr

& \widehat {DBI} = \widehat {EBI}\left( {gt} \right) \cr} \)

BI cạnh huyền chung

⇒⇒ ∆IDB = ∆IEB (cạnh huyền, góc nhọn)

Suy ra: ID = IE (hai cạnh tương ứng)

Quảng cáo

Xét hai tam giác vuông IEC và IFC, ta có ;

\(\eqalign{

& \widehat {IEC} = \widehat {IFC} = 90^\circ \cr

& \widehat {ECI} = \widehat {FCI}\left( {gt} \right) \cr} \)

CI canh huyền chung

Suy ra:  ∆ IEC = ∆IFC (cạnh huyền, góc nhọn)

Suy ra: IE = IF (hai cạnh tương ứng)           (2)

Từ (1) và (2) suy ra: ID = IF

Xét hai tam giác vuông IDA và IFA, ta có:

            ˆIDA=ˆIFA=90∘IDA^=IFA^=90∘

            ID = IF (chứng minh trên)

            AI cạnh huyền chung

Suy ra: ∆IDA = ∆IFA (cạnh huyền, cạnh góc vuông)

Suy ra: ˆDAI=ˆFAIDAI^=FAI^ (hai góc tương ứng)

Vậy AI là tia phân giác của ˆA

7 tháng 2 2020

Kẻ: ID⊥AB,IE⊥BC,IF⊥ACID⊥AB,IE⊥BC,IF⊥AC

Xét hai tam giác vuông IDB và IEB, ta có:

ˆIDB=ˆIEB=90∘ˆDBI=ˆEBI(gt)IDB^=IEB^=90∘DBI^=EBI^(gt)

BI cạnh huyền chung

⇒⇒ ∆IDB = ∆IEB (cạnh huyền, góc nhọn)

Suy ra: ID = IE (hai cạnh tương ứng)       (1)

Xét hai tam giác vuông IEC và IFC, ta có ;

ˆIEC=ˆIFC=90∘ˆECI=ˆFCI(gt)IEC^=IFC^=90∘ECI^=FCI^(gt)

CI canh huyền chung

Suy ra:  ∆ IEC = ∆IFC (cạnh huyền, góc nhọn)

Suy ra: IE = IF (hai cạnh tương ứng)           (2)

Từ (1) và (2) suy ra: ID = IF

Xét hai tam giác vuông IDA và IFA, ta có:

            ˆIDA=ˆIFA=90∘IDA^=IFA^=90∘

            ID = IF (chứng minh trên)

            AI cạnh huyền chung

Suy ra: ∆IDA = ∆IFA (cạnh huyền, cạnh góc vuông)

Suy ra: ˆDAI=ˆFAIDAI^=FAI^ (hai góc tương ứng)

Vậy AI là tia phân giác của ˆA



Read more: https://sachbaitap.com/cau-100-trang-151-sach-bai-tap-sbt-toan-lop-7-tap-1-c7a10140.html#ixzz6DFwdbF2W

26 tháng 10 2016

Đề như thế này hả? \(\left(x-7\right)^{x+1}-\left(x-7\right)^{x+11}=0\)

Nếu vậy ta làm như sau : 

\(\left(x-7\right)^{x+1}-\left(x-7\right)^{x+11}=0\)

\(\Leftrightarrow\left(x-7\right)^{x+1}-\left(x-7\right)^{x+1}.\left(x-7\right)^{10}=0\)

\(\Leftrightarrow\left(x-7\right)^{x+1}\left[1-\left(x-7\right)^{10}\right]=0\)

\(\Leftrightarrow\orbr{\begin{cases}\left(x-7\right)^{x+1}=0\\\left(x-7\right)^{10}=1\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x-7=0\\x-7=\pm1\end{cases}}\)

\(\Leftrightarrow x=7\) hoặc \(x=8\) hoặc \(x=6\)

Vậy tập nghiệm của pt \(S=\left\{6;7;8\right\}\)

26 tháng 10 2016

mình cung thế