Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Điều kiện:
\(x-1\ne0\Rightarrow x\ne1\)
\(x^3+x\ne0\Leftrightarrow x\ne0\)
Xét tứ giác ABEC có
AB//EC
AC//BE
Do đó: ABEC là hình bình hành
Suy ra: AC=BE
mà AC=BD
nên BE=BD
hay ΔBED cân tại B
a)tam giác BHA có BI là phân giác(góc ABI=góc HBI) nên \(\dfrac{AI}{IH}=\dfrac{AB}{BH}\Rightarrow AI\cdot BH=AB\cdot IH\)
b)xét tam giác BHA và tam giác BAC có:
góc ABC chung
góc BHA=góc BAC=90 độ
\(\Rightarrow\Delta BHA\infty\Delta BAC\left(g.g\right)\\ \Rightarrow\dfrac{BH}{AB}=\dfrac{AB}{BC}\Rightarrow AB^2=BH\cdot BC\)
c)ta có:
theo câu a) \(\dfrac{AI}{IH}=\dfrac{AB}{BH}\Rightarrow\dfrac{IH}{AI}=\dfrac{BH}{AB}\left(1\right)\)
theo câu b) \(\dfrac{BH}{AB}=\dfrac{AB}{BC}\)
ta lại có BD là phân giác góc ABC nên \(\dfrac{AB}{BC}=\dfrac{AD}{DC}\Rightarrow\dfrac{AD}{DC}=\dfrac{BH}{AB}\)(2)
từ (1) và (2)\(\Rightarrow\dfrac{IH}{IA}=\dfrac{AD}{DC}\left(=\dfrac{BH}{AB}\right)\)
\(B=\sqrt{371^2}+2\sqrt{31^2}-\sqrt{121^2}=371+2.31-121=371+62-121=312\)
a) Ta có:
\(H=\left(\dfrac{x}{x^2-4}+\dfrac{1}{x+2}+\dfrac{2}{2-x}\right):\left(x-2+\dfrac{10-x^2}{x+2}\right)\\ =\left(\dfrac{x}{x^2-4}+\dfrac{x-2}{x^2-4}-\dfrac{2\left(x+2\right)}{x^2-4}\right):\left(\dfrac{x^2-4+10-x^2}{x+2}\right)\\ =\dfrac{x+x-2-2x-4}{\left(x-2\right)\left(x+2\right)}\cdot\dfrac{x+2}{6}\\ =\dfrac{-6}{x-2}\cdot\dfrac{1}{6}=\dfrac{1}{2-x}\)
b) Để H < 0 thì \(\dfrac{1}{2-x}\) < 0 hay 2 - x < 0 ( do 1 > 0) suy ra x > 2
Vậy với x > 2 thì H < 0.
c) Ta có:
\(\left|x\right|=3\\ \Leftrightarrow\left[{}\begin{matrix}x=3\\x=-3\end{matrix}\right.\)
+) Với x = 3 thì:
H = \(\dfrac{1}{2-3}=-1\)
+) Với x = -3 thì:
\(H=\dfrac{1}{2-\left(-3\right)}=\dfrac{1}{5}\)
Vậy với |x| = 3 thì H = -1 hoặc H = 1/5
a: Ta có: \(H=\left(\dfrac{x}{x^2-4}+\dfrac{1}{x+2}+\dfrac{2}{2-x}\right):\left(x-2+\dfrac{10-x^2}{x+2}\right)\)
\(=\dfrac{x+x-2-2x-4}{\left(x-2\right)\left(x+2\right)}:\dfrac{x^2-4+10-x^2}{x+2}\)
\(=\dfrac{-6}{\left(x-2\right)\left(x+2\right)}\cdot\dfrac{x+2}{6}\)
\(=\dfrac{-1}{x-2}\)
b: Để H<0 thì x-2<0
hay x<2
Kết hợp ĐKXĐ, ta được: \(\left\{{}\begin{matrix}x< 2\\x\ne-2\end{matrix}\right.\)