K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài 2: 

\(\sin65^0=\cos25^0\)

\(\cos70^0=\sin20^0\)

\(\tan80^0=\cot10^0\)

\(\cot68^0=\tan22^0\)

NV
27 tháng 7 2021

Gọi O là tâm đường tròn \(\Rightarrow\) O là trung điểm BC

\(\stackrel\frown{BE}=\stackrel\frown{ED}=\stackrel\frown{DC}\Rightarrow\widehat{BOE}=\widehat{EOD}=\widehat{DOC}=\dfrac{180^0}{3}=60^0\)

Mà \(OD=OE=R\Rightarrow\Delta ODE\) đều

\(\Rightarrow ED=R\)

\(BN=NM=MC=\dfrac{2R}{3}\Rightarrow\dfrac{NM}{ED}=\dfrac{2}{3}\)

\(\stackrel\frown{BE}=\stackrel\frown{DC}\Rightarrow ED||BC\) 

Áp dụng định lý talet:

\(\dfrac{AN}{AE}=\dfrac{MN}{ED}=\dfrac{2}{3}\Rightarrow\dfrac{EN}{AN}=\dfrac{1}{2}\)

\(\dfrac{ON}{BN}=\dfrac{OB-BN}{BN}=\dfrac{R-\dfrac{2R}{3}}{\dfrac{2R}{3}}=\dfrac{1}{2}\) 

\(\Rightarrow\dfrac{EN}{AN}=\dfrac{ON}{BN}=\dfrac{1}{2}\) và \(\widehat{ENO}=\widehat{ANB}\) (đối đỉnh)

\(\Rightarrow\Delta ENO\sim ANB\left(c.g.c\right)\)

\(\Rightarrow\widehat{NBA}=\widehat{NOE}=60^0\)

Hoàn toàn tương tự, ta có \(\Delta MDO\sim\Delta MAC\Rightarrow\widehat{MCA}=\widehat{MOD}=60^0\)

\(\Rightarrow\Delta ABC\) đều

NV
27 tháng 7 2021

undefined

22 tháng 7 2017

Bài 3:

\(A=\sqrt{1-6x+9x^2}+\sqrt{9x^2-12x+4}\)

\(A=\sqrt{9x^2-3x-3x+1}+\sqrt{9x^2-6x-6x+4}\)

\(A=\sqrt{\left(3x-1\right)^2}+\sqrt{\left(3x-2\right)^2}\)

\(A=\left|3x-1\right|+\left|3x-2\right|\)

\(A=\left|3x-1\right|+\left|2-3x\right|\)

Áp dụng bất đẳng thức \(\left|A\right|+\left|B\right|\ge\left|A+B\right|\) ta có:

\(\left|3x-1\right|+\left|2-3x\right|\ge\left|3x-1+2-3x\right|\)

\(\Rightarrow\left|3x-1\right|+\left|2-3x\right|\ge\left|1\right|=1\)

Dấu "=" sảy ra khi và chỉ khi:

\(\left\{{}\begin{matrix}3x-1\ge0\\2-3x\ge0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}3x\ge1\\3x\le2\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x\ge\dfrac{1}{3}\\x\le\dfrac{2}{3}\end{matrix}\right.\)

\(\Rightarrow\dfrac{1}{3}\le x\le\dfrac{2}{3}\)

Vậy............

Chúc bạn học tốt!!!

22 tháng 7 2017

1 A\(=\sqrt{4\cdot5}-\sqrt{9\cdot5}+3\sqrt{9\cdot2}+\sqrt{36\cdot2}\)

\(=2\sqrt{5}-3\sqrt{5}+9\sqrt{2}+6\sqrt{2}\)

\(=\left(2\sqrt{5}-3\sqrt{5}\right)+\left(9\sqrt{2}+6\sqrt{2}\right)\)

\(=-\sqrt{5}+15\sqrt{2}\)

12 tháng 8 2017

1. a) Ta có :A=99...9000...0+25(n chữ số 9,n +2 chữ số 0)

Đặt a=11...1(n chữ số 1 ) suy ra : 10n=9a+1.Khi đó :

A=9a.(9a+1).100+25=8100a2+900a+25=(90a+5)2=99...952

13 tháng 8 2017

2.a)

Ta có :A=11...1\(\times\)10n+11...1-22...2(n chữ số 1 ,n chữ số 2)

Đặt a=11...1 (n chữ số 1) suy ra 10n=9a+1,22...2=2a.Khi đó :

A=(a(9a+1)+a)-2a=9a2=(3a)2=33...32(n chữ số 3)

b)Tương tự :B=a(9a+1)+a+4a+1=9a2+6a+1=(3a+1)2=33..342(n -1 chữ số 3)

10 tháng 7 2017

Áp dụng BĐT \(\dfrac{1}{x}+\dfrac{1}{y}\ge\dfrac{4}{x+y}\)(Tự chứng minh BĐT này )

\(B\ge\dfrac{4}{\left(a+b\right)^2+1}\)

10 tháng 7 2017

hihicảm ơn Định đã trả lời giúp mk . Nhưng bn làm sai rồi vì nếu làm như vậy sẽ ko tìm ra a, b

AH
Akai Haruma
Giáo viên
11 tháng 7 2017

Lời giải:

Ta có \(P=\frac{1}{a^2+b^2}+\frac{1}{2ab}+\frac{1}{4ab}+\frac{1}{4ab}+4ab\)

Áp dụng BĐT Cauchy-Schwarz:

\(\frac{1}{a^2+b^2}+\frac{1}{2ab}\geq \frac{4}{a^2+b^2+2ab}=\frac{4}{(a+b)^2}\geq 4\)

Áp dụng BĐT AM-GM: \(\frac{1}{4ab}+4ab\geq 2\).

\(1\geq a+b\geq 2\sqrt{ab}\rightarrow ab\leq \frac{1}{4}\)

Do đó \(P\geq 4+1+2=7\) hay \(P_{\min}=7\)

Dấu bằng xảy ra khi \(a=b=\frac{1}{2}\)

11 tháng 7 2017

hahacảm ơn bn nhiều lắm