Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,\left|x+3,4\right|+\left|x+2,4\right|+\left|x+7,2\right|=4x\)
\(\left|x+3,4\right|\ge0;\left|x+2,4\right|\ge0;\left|x+7,2\right|\ge0\)
\(< =>\left|x+3,4\right|+\left|x+2,4\right|+\left|x+7,2\right|>0\)
\(< =>4x>0\)
\(x>0\)
\(\hept{\begin{cases}\left|x+3,4\right|=x+3,4\\\left|x+2,4\right|=x+2,4\\\left|x+7,2\right|=x+7,2\end{cases}}\)
\(x+3,4+x+2,4+x+7,2=4x\)
\(x=13\left(TM\right)\)
\(b,3^{n+3}+3^{n+1}+2^{n+3}+2^{n+2}\)
\(3^n.27+3^n.3+2^n.8+2^n.4\)
\(3^n.30+2^n.12\)
\(\hept{\begin{cases}3^n.30⋮6\\2^n.12⋮6\end{cases}}\)
\(< =>3^n.30+2^n.12⋮6< =>VP⋮6\)
18, \(\frac{x}{2}+\frac{x^2}{8}=0\Leftrightarrow4x+x^2=0\Leftrightarrow x\left(x+4\right)=0\Leftrightarrow x=-4;x=0\)
19, \(4-x=2\left(x-4\right)^2\Leftrightarrow\left(4-x\right)-2\left(4-x\right)^2=0\)
\(\Leftrightarrow\left(4-x\right)\left[1-2\left(4-x\right)\right]=0\Leftrightarrow\left(4-x\right)\left(-7+2x\right)=0\Leftrightarrow x=4;x=\frac{7}{2}\)
20, \(\left(x^2+1\right)\left(x-2\right)+2x-4=0\Leftrightarrow\left(x^2+1\right)\left(x-2\right)+2\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x^2+3>0\right)=0\Leftrightarrow x=2\)
21, \(x^4-16x^2=0\Leftrightarrow x^2\left(x-4\right)\left(x+4\right)=0\Leftrightarrow x=0;x=\pm4\)
22, \(\left(x-5\right)^3-x+5=0\Leftrightarrow\left(x-5\right)^3-\left(x-5\right)=0\)
\(\Leftrightarrow\left(x-5\right)\left[\left(x-5\right)^2-1\right]=0\Leftrightarrow\left(x-5\right)\left(x-6\right)\left(x-4\right)=0\Leftrightarrow x=4;x=5;x=6\)
23, \(5\left(x-2\right)-x^2+4=0\Leftrightarrow5\left(x-2\right)-\left(x-2\right)\left(x+2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(5-x-2\right)=0\Leftrightarrow x=2;x=3\)
Thực hiện nhân tung ra ta có .
a.\(x^3+3x^2+3x+1-\left(x^3-3x+2\right)-3\left(x^2-9\right)=5\)
\(\Leftrightarrow6x+1-2+27=5\Leftrightarrow6x=-21\Leftrightarrow x=-\frac{7}{2}\)
b.\(x^3+3x^2-4+x^3-3x+2-\left(x^3+3x^2+3x+1\right)=4\)
\(\Rightarrow x^3=7\Leftrightarrow x=\sqrt[3]{7}\)
c.\(x^3+3x^2+3x+1+x^3-3x^2+3x-1=x^3+6x^2+12x+8+x^3-6x^2+12x-8\)
\(\Leftrightarrow2x^3+6x=2x^3+24x\Leftrightarrow18x=0\Leftrightarrow x=0\)
a) \(\left(x+1\right)^3-\left(x+2\right)\left(x-1\right)^2-3\left(x-3\right)\left(x+3\right)\)
\(=\left(x^3+3x^2+3x+1\right)-\left(x+1\right)\left(x^2-2x+1\right)-3\left(x^2-9\right)\)
\(=x^3+3x^2+3x+1-\left(x^3-x^2-x+1\right)-\left(3x^2-27\right)\)
\(=x^3+3x^2+3x+1-x^3+x^2+x+1-3x^2+27\)
\(=6x+26\)
Trả lời:
Bài 1:
a, \(\left(2x+3\right)^2+\left(2x-3\right)^2-2\left(4x^2-9\right)\)
\(=8x^3+36x^2+54x+27+8x^3-36x^2+54x-27-8x^2+18\)
\(=16x^3-8x^2+108x+18\)
b, \(\left(x+2\right)^3+\left(x-2\right)^3+x^3-3x\left(x+2\right)\left(x-2\right)\)
\(=x^3+6x^2+12x+8+x^3-6x^2+12x-8+x^3-3x\left(x^2-4\right)\)
\(=3x^3+24x-3x^3+12x=36x\)
Bài 2:
a, \(A=\left(3x+2\right)^2+\left(2x-7\right)^2-2\left(3x+2\right)\left(2x-7\right)\)
\(=\left(3x+2-2x+7\right)^2=\left(x+9\right)^2\)
Thay x = - 19 vào A, ta có:
\(A=\left(-19+9\right)^2=\left(-10\right)^2=100\)
b, \(A=2\left(x^3+y^3\right)-3\left(x^2+y^2\right)\)
\(=2\left(x+y\right)\left(x^2-xy+y^2\right)-3\left(x^2+2xy+y^2-2xy\right)\)
\(=2\left(x+y\right)\left(x^2+2xy+y^2-3xy\right)-3\left[\left(x+y\right)^2-2xy\right]\)
\(=2\left(x+y\right)\left[\left(x+y\right)^2-3xy\right]-3\left(x+y\right)^2+6xy\)
\(=2\left(x+y\right)^3-6xy-3\left(x+y\right)^2+6xy\)
\(=2\left(x+y\right)^3-3\left(x+y\right)^2\)
Thay x + y = 1 vào A, ta có:
\(A=2.1^3-3.1^2=-1\)
c, \(B=x^3+y^3+3xy\)
\(=\left(x+y\right)\left(x^2-xy+y^2\right)+3xy\)
\(=\left(x+y\right)\left(x^2+2xy+y^2-3xy\right)+3xy\)
\(=\left(x+y\right)\left[\left(x+y\right)^2-3xy\right]+3xy\)
\(=\left(x+y\right)^3-3xy\left(x+y\right)+3xy\)
\(=\left(x+y\right)^3-3xy\left(x+y-1\right)\)
Thay x + y = 1 vào B, ta có:
\(B=1^3-3xy.\left(1-1\right)=1-3xy.0=1-0=1\)
d, \(C=8x^3-27y^3\)
\(=\left(2x-3y\right)\left(4x^2+6xy+9y^2\right)\)
\(=\left(2x-3y\right)\left(4x^2-12xy+9y^2+6xy\right)\)
\(=\left(2x-3y\right)\left[\left(2x-3y\right)^2+6xy\right]\)
\(=\left(2x-3y\right)^3+6xy\left(2x-3y\right)\)
Thay xy = 4 và 2x + 3y = 5 vào C, ta có:
\(C\)\(=5^3+6.4.5=125+120=245\)
Trả lời:
Bài 3:
\(A=x^2+x-2=\left(x^2+x+\frac{1}{4}\right)-\frac{9}{4}=\left(x+\frac{1}{2}\right)^2-\frac{9}{4}\ge-\frac{9}{4}\forall x\)
Dấu "=" xảy ra khi \(x+\frac{1}{2}=0\Leftrightarrow x=-\frac{1}{2}\)
Vậy GTNN của \(A=-\frac{9}{4}\Leftrightarrow x=-\frac{1}{2}\)
\(B=x^2+y^2+x-6y+2021\)
\(=x^2+y^2+x-6y+\frac{1}{4}+9+\frac{8047}{4}\)
\(=\left(x^2+x+\frac{1}{4}\right)+\left(y^2-6y+9\right)+\frac{8047}{4}\)
\(=\left(x+\frac{1}{2}\right)^2+\left(y-3\right)^2+\frac{8047}{4}\)\(\ge\frac{8047}{4}\forall x;y\)
Dấu "=" xảy ra khi \(\hept{\begin{cases}x+\frac{1}{2}=0\\y-3=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=-\frac{1}{2}\\y=3\end{cases}}}\)
Vậy GTNN của B = \(\frac{8047}{4}\Leftrightarrow\hept{\begin{cases}x=-\frac{1}{2}\\y=3\end{cases}}\)
\(C=x^2+10y^2-6xy-10y+35\)
\(=x^2+9y^2+y^2-6xy-10y+25+10\)
\(=\left(x^2-6xy+9y^2\right)+\left(y^2-10y+25\right)+10\)
\(=\left(x-3y\right)^2+\left(y-5\right)^2+10\ge10\forall x;y\)
Dấu "=" xảy ra khi \(\hept{\begin{cases}x-3y=0\\y-5=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=15\\y=5\end{cases}}}\)
Vậy GTNN của C = 10 <=> \(\hept{\begin{cases}x=15\\y=5\end{cases}}\)
\(D=4x-x^2+5\)
\(=-\left(x^2-4x-5\right)\)
\(=-\left(x^2-4x+4-9\right)\)
\(=-\left[\left(x-2\right)^2-9\right]\)
\(=-\left(x-2\right)^2+9\le9\forall x\)
Dấu "=" xảy ra khi x - 2 = 0 <=> x = 2
Vậy GTLN của D = 9 <=> x = 2
\(E=-x^2-4y^2+2x-4y+3\)
\(=-x^2-4y^2+2x-4y-1-1+5\)
\(=-\left(x^2-2x+1\right)-\left(4y^2+4y+1\right)+5\)
\(=-\left(x-1\right)^2-\left(2y+1\right)^2+5\le5\forall x;y\)
Dấu "=" xảy ra khi \(\hept{\begin{cases}x-1=0\\2y+1=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=1\\y=-\frac{1}{2}\end{cases}}}\)
Vậy GTLN của D = 5 <=> \(\hept{\begin{cases}x=1\\y=-\frac{1}{2}\end{cases}}\)
86.NHỮNG PHÉP TÍNH THÚ VỊ
24+36=1
11+13=1
158+207=1
46+54=1
thì khi đó người làm câu hỏi bị sai/ mình nghĩ thế