Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 1:
a) Ta có: c⊥b và c⊥a => a // b ( tính chất bắc cầu )
b) Ta có D2 và C1 là một cặp góc so le trong bằng nhau.
Mà a // b nên D2 = C1
Mà C1 = 125o => D2 = 125o
Ta có: D2 + D1 = 180o ( tính chất kề bù )
Mà D2 = 125o
=> D1 = 180o - 125o = 55o
mình làm bài 1 nhé.
Bài 1:
a) Ta có: a\(\perp\)AB(gt), b\(\perp\)AB(gt )
=> a // b
b) Vì a // b(cmt)
nên \(\widehat{D_2}\)= \(\widehat{C_1}\)= 1250 (2 góc so le trong)
Lại có: \(\widehat{D_2}\)+\(\widehat{D_1}\)= 1800( 2 góc kề bù)
Hay: 1250 + \(\widehat{D_1}\)= 1800
=> \(\widehat{D_1}\)= 1800 - 1250 = 550
Vậy: \(\widehat{D_1}\)= 1250; \(\widehat{D_2}\)= 550
Học tốt🤍
a: Xét ΔABD vuông tại D và ΔACE vuông tại E có
BD=CE
\(\widehat{ABD}=\widehat{ACE}\)
Do đó: ΔABD=ΔACE
Suy ra: AB=AC
hay ΔABC cân tại A
b: XétΔABC có
AD là đường cao
CH là đường cao
AD cắt CH tại D
Do đó: D là trực tâm của ΔABC
=>BD vuông góc với AC
Vì x và y là hai đại lượng tỉ lệ thuận nên:
\(\frac{y_1}{x_1}=\frac{y_2}{x_2}\) = k (k \(\ne\) 0)
và \(x_1=6;x_2=-9\)
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\frac{y_1}{x_1}=\frac{y_2}{x_2}=\frac{y_1-y_2}{x_1-x_2}=\frac{10}{6-\left(-9\right)}=\frac{10}{15}=\frac{2}{3}\)
\(\frac{y_1}{x_1}=\frac{2}{3}\Rightarrow y_1=\frac{2}{3}.x_1=\frac{2}{3}.6=4\)
\(\frac{y_2}{x_2}=\frac{2}{3}\Rightarrow y_2=\frac{2}{3}.x_2=\frac{2}{3}.\left(-9\right)=-6\)
Vậy: \(y_1+y_2=4+\left(-6\right)=-2\)
\(\frac{B}{A}=\frac{2^2+4^2+6^2+...+200^2}{1^2+2^2+...+100^2}=\frac{\left(1.2\right)^2+\left(2.2\right)^2+...+\left(100.2\right)^2}{1^2+2^2+...+100^2}\)
\(=\frac{1^2.2^2+2^2.2^2+...+100^2+2^2}{1^2+2^2+...+100^2}\)
\(=\frac{\left(1^2+2^2+...+100^2\right).2^2}{1^2+2^2+100^2}\)
\(=2^2=4\)
Vậy \(\frac{B}{A}=4\)
Sửa lại: ( tại nhìn bé quá, tưởng mũ 3 -> mũ 2 )
\(\frac{B}{A}=\frac{2^3+4^3+6^3+...+200^3}{1^3+2^3+...+100^3}\)
\(\Rightarrow\frac{B}{A}=\frac{\left(1.2\right)^3+\left(2.2\right)^3+...+\left(100.2\right)^3}{1^3+2^3+...+100^3}\)
\(\Rightarrow\frac{B}{A}=\frac{1^3.2^3+2^3.2^3+...+100^3.2^3}{1^3+2^3+...+100^3}\)
\(\Rightarrow\frac{B}{A}=\frac{\left(1^3+2^3+...+100^3\right)2^3}{1^3+2^3+...+100^3}\)
\(\Rightarrow\frac{B}{A}=2^3=8\)
Vậy \(\frac{B}{A}=8\)