\(x-\sqrt{3x}+1\) về dạng \(A^2+b\)<...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 8 2016

b ) \(x-\sqrt{3x}+1=x-2\cdot\frac{\sqrt{3}}{2}+\frac{3}{4}-\frac{3}{4}+1\)

\(=\left(\sqrt{x}-\frac{\sqrt{3}}{2}\right)^2+\frac{1}{4}\)

vì \(\left(\sqrt{x}-\frac{\sqrt{3}}{2}\right)^2\ge0\)với mọi x

=> \(\left(\sqrt{x}-\frac{\sqrt{3}}{2}\right)^2+\frac{1}{4}\ge\frac{1}{4}\)voi moi x

=>\(\frac{1}{\left(\sqrt{x}-\frac{\sqrt{3}}{2}\right)^2+\frac{1}{4}}\le\frac{1}{\frac{1}{4}}\le4\)

=> max A \(\le4\)

dau = xay ra  <=> \(\left(\sqrt{x}-\frac{\sqrt{3}}{2}\right)=0\Leftrightarrow x=\frac{3}{4}\)

21 tháng 11 2021

1111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111

a: \(P=\dfrac{x+\sqrt{x}+1+11\sqrt{x}-11+34}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}:\dfrac{x+\sqrt{x}+1-x+1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\)

\(=\dfrac{x+12\sqrt{x}+24}{\sqrt{x}+2}\)

b: Thay \(x=3-2\sqrt{2}\) vào P, ta được:

\(P=\dfrac{3-2\sqrt{2}+12\left(\sqrt{2}-1\right)+24}{\sqrt{2}-1+2}\)

\(=\dfrac{27-2\sqrt{2}+12\sqrt{2}-12}{\sqrt{2}+1}=5+5\sqrt{2}\)

1 tháng 8 2020

a) Thay x=4 zô là đc . ra kết quả \(\frac{7}{6}\)là dúng

b) \(B=\frac{\sqrt{x}-1}{3\sqrt{x}-1}-\frac{1}{3\sqrt{x}+1}+\frac{8\sqrt{x}}{9x-1}\)

\(=\frac{\left(\sqrt{x}-1\right)\left(3\sqrt{x}+1\right)-\left(3\sqrt{x}-1\right)+8\sqrt{x}}{\left(3\sqrt{x}-1\right)\left(3\sqrt{x}+1\right)}\)

\(=\frac{3x+3\sqrt{x}}{\left(3\sqrt{x}-1\right)\left(3\sqrt{x}+1\right)}\)

\(=>P=A.B=\frac{3\sqrt{x}+1}{x+\sqrt{x}}.\frac{3\left(x+\sqrt{x}\right)}{\left(3\sqrt{x}-1\right)\left(3\sqrt{x}+1\right)}=\frac{3}{3\sqrt{x}-1}\)

c) xét \(\frac{1}{P}=\frac{3\sqrt{x}-1}{3}\)

do \(\sqrt{x}\ge0=>3\sqrt{x}-1\ge-1\)\(=>\frac{3\sqrt{x}-1}{3}\ge-\frac{1}{3}\)

\(=>\frac{1}{P}\ge-\frac{1}{3}\)

dấu = xảy ra khi x=0

zậy ..

1 tháng 8 2020

came ơn bạn nha!!!

21 tháng 10 2020

Giúp mình với mình đang cần gấp. Thk you các pạn

15 tháng 8 2020

Bài 2 :

b) \(\sqrt{x+2\sqrt{x-1}}+\sqrt{x-2\sqrt{x-1}}=2\) (1)

ĐKXĐ : \(x\ge1\)

Pt(1) tương đương :

\(\sqrt{\left(x-1\right)+2\sqrt{x-1}+1}+\sqrt{\left(x-1\right)-2\sqrt{x-1}+1}=2\)

\(\Leftrightarrow\sqrt{\left(\sqrt{x-1}+1\right)^2}+\sqrt{\left(\sqrt{x-1}-1\right)^2}=2\)

\(\Leftrightarrow\sqrt{x-1}+1+\left|\sqrt{x-1}-1\right|=2\) (*)

Xét \(x\ge2\Rightarrow\sqrt{x-1}-1\ge0\)

\(\Rightarrow\left|\sqrt{x-1}-1\right|=\sqrt{x-1}-1\)

Khi đó pt (*) trở thành :

\(\sqrt{x-1}+1+\sqrt{x-1}-1=2\)

\(\Leftrightarrow2\sqrt{x-1}=2\)

\(\Leftrightarrow\sqrt{x-1}=1\)

\(\Leftrightarrow x-1=1\)

\(\Leftrightarrow x=2\) ( Thỏa mãn )

Xét \(1\le x< 2\) thì \(x\ge2\Rightarrow\sqrt{x-1}-1< 0\)

Nên : \(\left|\sqrt{x-1}-1\right|=1-\sqrt{x-1}\). Khi đó pt (*) trở thành :

\(\sqrt{x-1}+1+1-\sqrt{x-1}=2\)

\(\Leftrightarrow2=2\) ( Luôn đúng )

Vậy tập nghiệm của phương trình đã cho là \(S=\left\{x|1\le x\le2\right\}\)

15 tháng 8 2020

Bài 1 : 

a) ĐKXĐ : \(-1\le a\le1\)

Ta có : \(Q=\left(\frac{3}{\sqrt{1+a}}+\sqrt{1-a}\right):\left(\frac{3}{\sqrt{1-a^2}}\right)\)

\(=\left(\frac{3+\sqrt{1-a}.\sqrt{1+a}}{\sqrt{1+a}}\right)\cdot\frac{\sqrt{1-a^2}}{3}\)

\(=\frac{3+\sqrt{\left(1-a\right)\left(1+a\right)}}{\sqrt{1+a}}\cdot\frac{\sqrt{\left(1-a\right)\left(1+a\right)}}{3}\)

\(=\frac{\left(3+\sqrt{1-a^2}\right).\sqrt{1-a}}{3}\)

Vậy \(Q=\frac{\left(3+\sqrt{1-a^2}\right).\sqrt{1-a}}{3}\) với \(-1\le a\le1\)

b) Với \(a=\frac{\sqrt{3}}{2}\) thỏa mãn ĐKXĐ \(-1\le a\le1\)nên ta có :

\(\hept{\begin{cases}1-a=1-\frac{\sqrt{3}}{2}=\frac{4-2\sqrt{3}}{4}=\frac{\left(\sqrt{3}-1\right)^2}{2^2}\\1-a^2=1-\frac{3}{4}=\frac{1}{4}\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}\sqrt{1-a}=\sqrt{\frac{\left(\sqrt{3}-1\right)^2}{2^2}}=\left|\frac{\sqrt{3}-1}{2}\right|=\frac{\sqrt{3}-1}{2}\\\sqrt{1-a^2}=\frac{1}{2}\end{cases}}\)

Do đó : \(Q=\frac{\left(3+\frac{1}{2}\right)\cdot\frac{\sqrt{3}-1}{2}}{3}=\frac{5\sqrt{3}-5}{12}\)

1. Cho biểu thức:\(C=\frac{3x+\sqrt{9x}-3}{x+\sqrt{x}-2}-\frac{\sqrt{x}+\:1}{\sqrt{x}+\:2}+\frac{\sqrt{x}+2}{1-\sqrt{x}}\)    a) Tìm điều kiện của x để C có nghĩa.    b) Rút gọn C.    c) Tìm các giá trị nguyên của x để giá trị C là số ngueyeenn.2. Cho biểu thức: \(A=x^2-3x\sqrt{y}+2y\)    a) Phân tích A thành nhân tử.    b) Tính giá trị của A khi: \(x=\frac{1}{\sqrt{6}-2}\); \(y=\frac{1}{9+4\sqrt{5}}\)3. Rút gọn rồi tính...
Đọc tiếp

1. Cho biểu thức:

\(C=\frac{3x+\sqrt{9x}-3}{x+\sqrt{x}-2}-\frac{\sqrt{x}+\:1}{\sqrt{x}+\:2}+\frac{\sqrt{x}+2}{1-\sqrt{x}}\)

    a) Tìm điều kiện của x để C có nghĩa.

    b) Rút gọn C.

    c) Tìm các giá trị nguyên của x để giá trị C là số ngueyeenn.


2. Cho biểu thức: \(A=x^2-3x\sqrt{y}+2y\)

    a) Phân tích A thành nhân tử.

    b) Tính giá trị của A khi: \(x=\frac{1}{\sqrt{6}-2}\)\(y=\frac{1}{9+4\sqrt{5}}\)


3. Rút gọn rồi tính giá trị của biểu thức tại \(x=3\)

\(M=\frac{\sqrt{x-2\sqrt{2}}}{\sqrt{x^2-4x\sqrt{2}+8}}-\frac{\sqrt{x+2\sqrt{2}}}{\sqrt{x^2+4x\sqrt{2}+8}}\)


4. Cho biểu thức: ​\(\frac{\frac{2\sqrt{x}}{\sqrt{x}+3}+\frac{\sqrt{x}}{\sqrt{x}-3}-\frac{3x+3}{x-9}}{\frac{2\sqrt{x}-2}{\sqrt{x}-3}-1}\)với \(x\ge0\)và \(x\:\ne9\)

    a) Rút gọn P.

    b) Tìm giá trị của x ​để \(P\:< -\frac{1}{2}\)

    c) Tìm giá trị của x ​để P có giá trị nhỏ nhất.


5. Cho biểu thức:

\(Q=\frac{2\sqrt{x}-9}{x-5\sqrt{x}+6}-\frac{\sqrt{x}+3}{\sqrt{x}-2}-\frac{2\sqrt{x}+1}{3-\sqrt{x}}\)

    a) Tìm giá trị của x để Q có nghĩa.

    b) Rút gọn Q.

    c) Tìm giá trị của của x để Q có giá trị nguyên.

4
11 tháng 5 2017

moi tay

8 tháng 6 2017

giải giùm mình bài 5 với