
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


Bài 1:
1: xx'⊥AD
yy'⊥AD
Do đó: xx'//yy'
2:
Cách 1:
xx'//yy'
=>\(\hat{C_1}=\hat{x^{\prime}BC}\) (hai góc so le trong)
=>\(\hat{C_1}=70^0\)
Cách 2:
ta có: \(\hat{x^{\prime}BC}+\hat{xBC}=180^0\) (hai góc kề bù)
=>\(\hat{xBC}=180^0-70^0=110^0\)
Ta có: xx'//yy'
=>\(\hat{xBC}+\hat{C_1}=180^0\) (hai góc trong cùng phía)
=>\(\hat{C_1}=180^0-110^0=70^0\)
Bài 2:
a: \(\hat{ABC}=\hat{n^{\prime}CB}\left(=80^0\right)\)
mà hai góc này là hai góc ở vị trí so le trong
nên mm'//nn'
b: Cách 1:
ta có: \(\hat{xAm}+\hat{mAD}=180^0\) (hai góc kề bù)
=>\(\hat{mAD}=180^0-70^0=110^0\)
Ta có: AB//CD
=>\(\hat{mAD}=\hat{D_1}\) (hai góc so le trong)
=>\(\hat{D_1}=110^0\)
Cách 2:
Ta có: \(\hat{xAm}=\hat{BAD}\) (hai góc đối đỉnh)
mà \(\hat{xAm}=70^0\)
nên \(\hat{BAD}=70^0\)
Ta có: AB//CD
=>\(\hat{BAD}+\hat{D_1}=180^0\) (hai góc trong cùng phía)
=>\(\hat{D_1}=180^0-70^0=110^0\)

Bài 2:
Qua B, kẻ tia BD nằm giữa hai tia BA và BC sao cho BD//Ax//Cz
ta có: BD//Ax
=>\(\hat{xAB}+\hat{ABD}=180^0\) (hai góc trong cùng phía)
=>\(\hat{ABD}=180^0-125^0=55^0\)
Ta có: BD//Cz
=>\(\hat{DBC}+\hat{BCz}=180^0\) (hai góc trong cùng phía)
=>\(\hat{DBC}=180^0-130^0=50^0\)
Ta có: tia BD nằm giữa hai tia BA và BC
=>\(\hat{ABC}=\hat{DBA}+\hat{DBC}\)
=>\(\hat{ABC}=55^0+50^0=105^0\)
Bài 3:
Ax//yy'
=>\(\hat{xAB}=\hat{yBA}\) (hai góc so le trong)
=>\(\hat{yBA}=50^0\)
Cz//yy'
=>\(\hat{yBC}=\hat{zCB}\) (hai góc so le trong)
=>\(\hat{yBC}=40^0\)
Ta có: tia By nằm giữa hai tia BA và BC
=>\(\hat{ABC}=\hat{yBA}+\hat{yBC}=40^0+50^0=90^0\)
Bài 4:
Qua B, kẻ tia BD nằm giữa hai tia BA và BC sao cho BD//Ax//Cz
BD//Ax
=>\(\hat{xAB}+\hat{ABD}=180^0\) (hai góc trong cùng phía)
=>\(\hat{ABD}=180^0-110^0=70^0\)
ta có; tia BD nằm giữa hai tia BA và BC
=>\(\hat{DBA}+\hat{DBC}=\hat{ABC}\)
=>\(\hat{DBC}=100^0-70^0=30^0\)
Ta có: \(\hat{DBC}=\hat{zCB}\left(=30^0\right)\)
mà hai góc này là hai góc ở vị trí so le trong
nên BD//Cz
Ta có: BD//Ax
BD//Cz
Do đó: Ax//Cz

a: a//b
=>\(\hat{A_1}=\hat{B_3}\) (hai góc so le trong)
mà \(\hat{A_1}=65^0\)
nên \(\hat{B_3}=65^0\)
b: Ta có: \(\hat{B}_3+\hat{B_2}=180^0\) (hai góc kề bù)
=>\(\hat{B_2}=180^0-65^0=115^0\)
Giải:
a; \(\hat{A_1}\) = \(65^0\) (gt)
\(\hat{A_1}\) = \(\hat{A_3}\) = 65\(^0\)(đối đỉnh)
\(\hat{A_3}\) = \(\hat{B_3}\) = \(65^0\) (slt)
b; \(\hat{B_2}\) + \(\hat{B_3}\) = 180\(^0\) (hai góc kề bù)
\(\hat{B_2}\) = 180\(^0\) - \(\hat{B_3}\)
\(\hat{B_2}\) = 180\(^0\) - 65\(^0\) = 115\(^0\)
Vậy a; \(\hat{B}_3\) = 65\(^0\)
b; \(\hat{B_2}\) = 115\(^0\)

bài 2: a. ta có góc ADE = góc ABC (= 45 độ)
mà 2 góc này ở vị trí đồng vị
⇒ DE // BC
b. ta có góc FEC = góc ECB
mà 2 góc này ở vị trí so le trong
⇒ EF // BC
c. vì DE // BC và EF // BC nên DE ≡ EF
⇒ 3 điểm D,E,F thẳng hàng
bài 3:
a. ta có góc CHK = góc CAB = 90 độ
mà 2 góc này ở vị trí đồng vị
⇒ KH // AB
b. ta có góc IKB = góc KBA = 60 độ
mà 2 góc này ở vị trí so le trong
⇒ KI // AB
c. vì KH // AB và KI // AB nên KH ≡ KI
⇒ 3 điểm H,K,I thẳng hàng

a: \(\left(-\frac54x+3,25\right)\left\lbrack\frac35-\left(-\frac52x\right)\right\rbrack=0\)
=>\(\left(\frac54x-\frac{13}{4}\right)\left(\frac52x+\frac35\right)=0\)
=>\(\left[\begin{array}{l}\frac54x-\frac{13}{4}=0\\ \frac52x+\frac35=0\end{array}\right.\Rightarrow\left[\begin{array}{l}\frac54x=\frac{13}{4}\\ \frac52x=-\frac35\end{array}\right.\Rightarrow\left[\begin{array}{l}x=\frac{13}{4}:\frac54=\frac{13}{5}\\ x=-\frac35:\frac52=-\frac{6}{25}\end{array}\right.\)
b: \(\left(-\frac72x+1,75\right)\left\lbrack\frac45-\left(-\frac53x\right)\right\rbrack=0\)
=>\(\left[\begin{array}{l}-\frac72x+1,75=0\\ \frac45-\left(-\frac53x\right)=0\end{array}\right.\Longrightarrow\left[\begin{array}{l}-\frac72x=-1,75=-\frac74\\ \frac53x=-\frac45\end{array}\right.\)
=>\(\left[\begin{array}{l}x=\frac{-7}{4}:\frac{-7}{2}=\frac24=\frac12\\ x=-\frac45:\frac53=-\frac45\cdot\frac35=-\frac{12}{25}\end{array}\right.\)
c: \(\left(x^2-4\right)\left(x+\frac27\right)=0\)
=>\(\left[\begin{array}{l}x^2-4=0\\ x+\frac27=0\end{array}\right.\Rightarrow\left[\begin{array}{l}x^2=4\\ x=-\frac27\end{array}\right.\Rightarrow\left[\begin{array}{l}x=2\\ x=-2\\ x=-\frac27\end{array}\right.\)
d: \(\left(25-x^2\right)\left(5x-\frac59\right)=0\)
=>\(\left[\begin{array}{l}25-x^2=0\\ 5x-\frac59=0\end{array}\right.\Rightarrow\left[\begin{array}{l}x^2=25\\ 5x=\frac59\end{array}\right.\Rightarrow\left[\begin{array}{l}x=5\\ x=-5\\ x=\frac19\end{array}\right.\)

4.
Ta có: \(S=2^1+3^{4.1+1}+4^{4.2+1}+\cdots+2024^{4.2002+1}\)
Do tính chất lũy thừa bậc 4n+1 của 1 số có tận cùng giống số đó, nên S có cùng chữ số tận cùng với tổng:
\(S_1=2+3+4+\cdots+2024=\frac{2024.2025}{2}-1=2049299\)
Vậy S có tận cùng bằng 9

a: Ta có: \(3x+\left(x-\frac{9}{20}\right)=-\frac{13}{40}\)
=>\(3x+x-\frac{9}{20}=-\frac{13}{40}\)
=>\(4x=-\frac{13}{40}+\frac{9}{20}=-\frac{13}{40}+\frac{18}{40}=\frac{5}{40}=\frac18\)
=>\(x=\frac18:4=\frac{1}{32}\)
b: \(x+\left(\frac14x-2,5\right)=-\frac{11}{20}\)
=>\(x+\frac14x-2,5=-\frac{11}{20}\)
=>\(1,25x=-0,55+2,5=1,95\)
=>\(x=\frac{1.95}{1.25}=\frac{195}{125}=\frac{39}{25}\)
c: \(\frac35x+\left(x+0,5\right)=-\frac{13}{15}\)
=>\(\frac35x+x+0,5=-\frac{13}{15}\)
=>\(\frac85x=-\frac{13}{15}-0,5=-\frac{26}{30}-\frac{15}{30}=-\frac{41}{30}\)
=>\(x=-\frac{41}{30}:\frac85=-\frac{41}{30}\cdot\frac58=\frac{-41}{6\cdot8}=-\frac{41}{48}\)
d: \(-\frac23x+\left(4x-\frac67\right)=\frac{9}{21}\)
=>\(-\frac23x+4x-\frac67=\frac37\)
=>\(\frac{10}{3}x=\frac37+\frac67=\frac97\)
=>\(x=\frac97:\frac{10}{3}=\frac97\cdot\frac{3}{10}=\frac{27}{70}\)
bài 11: câu a:
\(3x+\left(x-\frac{9}{20}\right)=-\frac{13}{40}\)
\(3x+x-\frac{9}{20}=-\frac{13}{40}\)
\(4x=-\frac{13}{40}+\frac{9}{20}\)
\(4x=-\frac{13}{40}+\frac{18}{40}\)
\(4x=\frac{5}{40}\)
\(4x=\frac18\)
\(x=\frac18:4=\frac18\cdot\frac14=\frac{1}{32}\)
b. \(x+\left(\frac14x-2,5\right)=-\frac{11}{20}\)
\(x+\frac14x-2,5=-\frac{11}{20}\)
\(\frac54x-2,5=-\frac{11}{20}\)
\(\frac54x=-\frac{11}{20}+2,5\)
\(\frac54x=\frac{39}{20}\)
\(x=\frac{39}{20}:\frac54=\frac{39}{20}\cdot\frac45=\frac{39}{25}\)
c. \(\frac35x+\left(x+0,5\right)=-\frac{13}{15}\)
\(\frac35x+x+0,5=-\frac{13}{15}\)
\(\frac85x+\frac12=-\frac{13}{15}\)
\(\frac85x=-\frac{13}{15}-\frac12\)
\(\frac85x=-\frac{41}{30}\)
\(x=-\frac{41}{30}:\frac85=-\frac{41}{30}\cdot\frac58=-\frac{41}{48}\)
\(d.-\frac23x+\left(4x-\frac67\right)=\frac{9}{21}\)
\(-\frac23x+4x-\frac67=\frac{9}{21}\)
\(\frac{10}{3}x=\frac97\)
\(x=\frac97:\frac{10}{3}=\frac97\cdot\frac{3}{10}=\frac{27}{70}\)

Ta có: tia CD nằm giữa hai tia CF và CB
=>\(\hat{BCF}=\hat{BCD}+\hat{FCD}=20^0+50^0=70^0\)
Ta có: \(\hat{BCF}=\hat{ABC}\left(=70^0\right)\)
mà hai góc này là hai góc ở vị trí so le trong
nên AB//CF
Ta có: \(\hat{EDC}+\hat{DCF}=130^0+50^0=180^0\)
mà hai góc này là hai góc ở vị trí trong cùng phía
nên ED//CF
Ta có: AB//CF
ED//CF
Do đó: AB//DE

Bài 8:
Chu vi đáy là:
3,5+3,5+3+6=7+9=16(cm)
Diện tích xung quanh là: \(16\cdot11,5=184\left(\operatorname{cm}^2\right)\)
Bài 9:
Diện tích đáy là:
\(S=\frac12\cdot7\cdot24=12\cdot7=84\left(m^2\right)\)
Thể tích của khối bê tông là:
\(84\cdot22=1848\left(m^3\right)\)
Số tiền phải trả là:
\(1848\cdot2500000=4620000000\) (đồng)
Bài 13:
a: \(\left(2x+1\right)^2-4\left(x+2\right)^2=9\)
=>\(4x^2+4x+1-4\left(x^2+4x+4\right)=9\)
=>\(4x^2+4x+1-4x^2-16x-16=9\)
=>-12x-15=9
=>-12x=24
=>x=-2
b: \(\left(x+3\right)^2-\left(x-4\right)\left(x+8\right)=1\)
=>\(x^2+6x+9-\left(x^2+8x-4x-32\right)=1\)
=>\(x^2+6x+9-\left(x^2+4x-32\right)=1\)
=>\(x^2+6x+9-x^2-4x+32=1\)
=>2x+41=1
=>2x=-40
=>x=-20
c: \(3\left(x+2\right)^2+\left(2x-1\right)^2-7\left(x+3\right)\left(x-3\right)=36\)
=>\(3\left(x^2+4x+4\right)+4x^2-4x+1-7\left(x^2-9\right)=36\)
=>\(3x^2+12x+12+4x^2-4x+1-7x^2+63=36\)
=>8x+76=36
=>8x=-40
=>x=-5
d: \(\left(3x-2\right)^2=\left(5-2x\right)^2\)
=>\(\left(3x-2\right)^2-\left(2x-5\right)^2=0\)
=>(3x-2-2x+5)(3x-2+2x-5)=0
=>(x+3)(5x-7)=0
=>\(\left[\begin{array}{l}x+3=0\\ 5x-7=0\end{array}\right.\Rightarrow\left[\begin{array}{l}x=-3\\ x=\frac75\end{array}\right.\)
Bài 12:
a: \(A=27+\left(x-3\right)\left(x^2+3x+9\right)=27+x^3-27=x^3\)
Khi x=-2 thì \(A=\left(-2\right)^3=-8\)
c: \(C=\left(x+y\right)^2+\left(x-y\right)^2-2\left(x+y\right)\left(x-y\right)\)
\(=\left(x+y-x+y\right)^2=\left(2y\right)^2=4y^2\)
Khi y=-2 thì \(C=4\cdot\left(-2\right)^2=4\cdot4=16\)
h: \(H=x^3-y^3-3xy\)
\(=\left(x-y\right)^3+3xy\left(x-y\right)-3xy=1^3+3xy-3xy=1\)
m: \(M=\left(x-y\right)^3-x^2+2xy-y^2=\left(x-y\right)^3-\left(x-y\right)^2=\left(-5\right)^3-\left(-5\right)^2=-125-25=-150\)
n: \(N=2\left(x^3-y^3\right)-3\left(x+y\right)^2\)
\(=2\left\lbrack\left(x-y\right)^3+3xy\left(x-y\right)\right\rbrack-3\left\lbrack\left(x-y\right)^2+4xy\right\rbrack\)
\(=2\left(2^3+3xy\cdot2\right)-3\left\lbrack2^2+4xy\right\rbrack=16+12xy-12-12xy=4\)
Đây là các bài luyện tập CB. em gặp chưa hiểu biết cách làm xem lại lý thuyết mà chưa hiểu gửi 1-2 câu thầy cô và các bạn hỗ trợ sau đó tự làm tiếp để hiểu bài và học tốt.