K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài 13:

a: \(\left(2x+1\right)^2-4\left(x+2\right)^2=9\)

=>\(4x^2+4x+1-4\left(x^2+4x+4\right)=9\)

=>\(4x^2+4x+1-4x^2-16x-16=9\)

=>-12x-15=9

=>-12x=24

=>x=-2

b: \(\left(x+3\right)^2-\left(x-4\right)\left(x+8\right)=1\)

=>\(x^2+6x+9-\left(x^2+8x-4x-32\right)=1\)

=>\(x^2+6x+9-\left(x^2+4x-32\right)=1\)

=>\(x^2+6x+9-x^2-4x+32=1\)

=>2x+41=1

=>2x=-40

=>x=-20

c: \(3\left(x+2\right)^2+\left(2x-1\right)^2-7\left(x+3\right)\left(x-3\right)=36\)

=>\(3\left(x^2+4x+4\right)+4x^2-4x+1-7\left(x^2-9\right)=36\)

=>\(3x^2+12x+12+4x^2-4x+1-7x^2+63=36\)

=>8x+76=36

=>8x=-40

=>x=-5

d: \(\left(3x-2\right)^2=\left(5-2x\right)^2\)

=>\(\left(3x-2\right)^2-\left(2x-5\right)^2=0\)

=>(3x-2-2x+5)(3x-2+2x-5)=0

=>(x+3)(5x-7)=0

=>\(\left[\begin{array}{l}x+3=0\\ 5x-7=0\end{array}\right.\Rightarrow\left[\begin{array}{l}x=-3\\ x=\frac75\end{array}\right.\)

Bài 12:

a: \(A=27+\left(x-3\right)\left(x^2+3x+9\right)=27+x^3-27=x^3\)

Khi x=-2 thì \(A=\left(-2\right)^3=-8\)

c: \(C=\left(x+y\right)^2+\left(x-y\right)^2-2\left(x+y\right)\left(x-y\right)\)

\(=\left(x+y-x+y\right)^2=\left(2y\right)^2=4y^2\)

Khi y=-2 thì \(C=4\cdot\left(-2\right)^2=4\cdot4=16\)

h: \(H=x^3-y^3-3xy\)

\(=\left(x-y\right)^3+3xy\left(x-y\right)-3xy=1^3+3xy-3xy=1\)

m: \(M=\left(x-y\right)^3-x^2+2xy-y^2=\left(x-y\right)^3-\left(x-y\right)^2=\left(-5\right)^3-\left(-5\right)^2=-125-25=-150\)

n: \(N=2\left(x^3-y^3\right)-3\left(x+y\right)^2\)

\(=2\left\lbrack\left(x-y\right)^3+3xy\left(x-y\right)\right\rbrack-3\left\lbrack\left(x-y\right)^2+4xy\right\rbrack\)

\(=2\left(2^3+3xy\cdot2\right)-3\left\lbrack2^2+4xy\right\rbrack=16+12xy-12-12xy=4\)

TH
Thầy Hùng Olm
Manager VIP
20 tháng 5

Đây là các bài luyện tập CB. em gặp chưa hiểu biết cách làm xem lại lý thuyết mà chưa hiểu gửi 1-2 câu thầy cô và các bạn hỗ trợ sau đó tự làm tiếp để hiểu bài và học tốt.


Bài 1:

1: xx'⊥AD

yy'⊥AD

Do đó: xx'//yy'

2:

Cách 1:

xx'//yy'

=>\(\hat{C_1}=\hat{x^{\prime}BC}\) (hai góc so le trong)

=>\(\hat{C_1}=70^0\)

Cách 2:

ta có: \(\hat{x^{\prime}BC}+\hat{xBC}=180^0\) (hai góc kề bù)

=>\(\hat{xBC}=180^0-70^0=110^0\)

Ta có: xx'//yy'

=>\(\hat{xBC}+\hat{C_1}=180^0\) (hai góc trong cùng phía)

=>\(\hat{C_1}=180^0-110^0=70^0\)

Bài 2:

a: \(\hat{ABC}=\hat{n^{\prime}CB}\left(=80^0\right)\)

mà hai góc này là hai góc ở vị trí so le trong

nên mm'//nn'

b: Cách 1:

ta có: \(\hat{xAm}+\hat{mAD}=180^0\) (hai góc kề bù)

=>\(\hat{mAD}=180^0-70^0=110^0\)

Ta có: AB//CD
=>\(\hat{mAD}=\hat{D_1}\) (hai góc so le trong)

=>\(\hat{D_1}=110^0\)

Cách 2:

Ta có: \(\hat{xAm}=\hat{BAD}\) (hai góc đối đỉnh)

\(\hat{xAm}=70^0\)

nên \(\hat{BAD}=70^0\)

Ta có: AB//CD

=>\(\hat{BAD}+\hat{D_1}=180^0\) (hai góc trong cùng phía)

=>\(\hat{D_1}=180^0-70^0=110^0\)

Bài 2:

Qua B, kẻ tia BD nằm giữa hai tia BA và BC sao cho BD//Ax//Cz

ta có: BD//Ax

=>\(\hat{xAB}+\hat{ABD}=180^0\) (hai góc trong cùng phía)

=>\(\hat{ABD}=180^0-125^0=55^0\)

Ta có: BD//Cz

=>\(\hat{DBC}+\hat{BCz}=180^0\) (hai góc trong cùng phía)

=>\(\hat{DBC}=180^0-130^0=50^0\)

Ta có: tia BD nằm giữa hai tia BA và BC

=>\(\hat{ABC}=\hat{DBA}+\hat{DBC}\)

=>\(\hat{ABC}=55^0+50^0=105^0\)

Bài 3:

Ax//yy'

=>\(\hat{xAB}=\hat{yBA}\) (hai góc so le trong)

=>\(\hat{yBA}=50^0\)

Cz//yy'

=>\(\hat{yBC}=\hat{zCB}\) (hai góc so le trong)

=>\(\hat{yBC}=40^0\)

Ta có: tia By nằm giữa hai tia BA và BC

=>\(\hat{ABC}=\hat{yBA}+\hat{yBC}=40^0+50^0=90^0\)

Bài 4:

Qua B, kẻ tia BD nằm giữa hai tia BA và BC sao cho BD//Ax//Cz

BD//Ax

=>\(\hat{xAB}+\hat{ABD}=180^0\) (hai góc trong cùng phía)

=>\(\hat{ABD}=180^0-110^0=70^0\)

ta có; tia BD nằm giữa hai tia BA và BC

=>\(\hat{DBA}+\hat{DBC}=\hat{ABC}\)

=>\(\hat{DBC}=100^0-70^0=30^0\)

Ta có: \(\hat{DBC}=\hat{zCB}\left(=30^0\right)\)

mà hai góc này là hai góc ở vị trí so le trong

nên BD//Cz

Ta có: BD//Ax

BD//Cz

Do đó: Ax//Cz



a: a//b

=>\(\hat{A_1}=\hat{B_3}\) (hai góc so le trong)

\(\hat{A_1}=65^0\)

nên \(\hat{B_3}=65^0\)

b: Ta có: \(\hat{B}_3+\hat{B_2}=180^0\) (hai góc kề bù)

=>\(\hat{B_2}=180^0-65^0=115^0\)

11 tháng 8

Giải:

a; \(\hat{A_1}\) = \(65^0\) (gt)

\(\hat{A_1}\) = \(\hat{A_3}\) = 65\(^0\)(đối đỉnh)

\(\hat{A_3}\) = \(\hat{B_3}\) = \(65^0\) (slt)

b; \(\hat{B_2}\) + \(\hat{B_3}\) = 180\(^0\) (hai góc kề bù)

\(\hat{B_2}\) = 180\(^0\) - \(\hat{B_3}\)

\(\hat{B_2}\) = 180\(^0\) - 65\(^0\) = 115\(^0\)

Vậy a; \(\hat{B}_3\) = 65\(^0\)

b; \(\hat{B_2}\) = 115\(^0\)







S
28 tháng 8

bài 2: a. ta có góc ADE = góc ABC (= 45 độ)

mà 2 góc này ở vị trí đồng vị

⇒ DE // BC

b. ta có góc FEC = góc ECB

mà 2 góc này ở vị trí so le trong

⇒ EF // BC

c. vì DE // BC và EF // BC nên DE ≡ EF

⇒ 3 điểm D,E,F thẳng hàng

bài 3:

a. ta có góc CHK = góc CAB = 90 độ

mà 2 góc này ở vị trí đồng vị

⇒ KH // AB

b. ta có góc IKB = góc KBA = 60 độ

mà 2 góc này ở vị trí so le trong

⇒ KI // AB

c. vì KH // AB và KI // AB nên KH ≡ KI

⇒ 3 điểm H,K,I thẳng hàng

27 tháng 8

giups em bai 2 và 3


a: \(\left(-\frac54x+3,25\right)\left\lbrack\frac35-\left(-\frac52x\right)\right\rbrack=0\)

=>\(\left(\frac54x-\frac{13}{4}\right)\left(\frac52x+\frac35\right)=0\)

=>\(\left[\begin{array}{l}\frac54x-\frac{13}{4}=0\\ \frac52x+\frac35=0\end{array}\right.\Rightarrow\left[\begin{array}{l}\frac54x=\frac{13}{4}\\ \frac52x=-\frac35\end{array}\right.\Rightarrow\left[\begin{array}{l}x=\frac{13}{4}:\frac54=\frac{13}{5}\\ x=-\frac35:\frac52=-\frac{6}{25}\end{array}\right.\)

b: \(\left(-\frac72x+1,75\right)\left\lbrack\frac45-\left(-\frac53x\right)\right\rbrack=0\)

=>\(\left[\begin{array}{l}-\frac72x+1,75=0\\ \frac45-\left(-\frac53x\right)=0\end{array}\right.\Longrightarrow\left[\begin{array}{l}-\frac72x=-1,75=-\frac74\\ \frac53x=-\frac45\end{array}\right.\)

=>\(\left[\begin{array}{l}x=\frac{-7}{4}:\frac{-7}{2}=\frac24=\frac12\\ x=-\frac45:\frac53=-\frac45\cdot\frac35=-\frac{12}{25}\end{array}\right.\)

c: \(\left(x^2-4\right)\left(x+\frac27\right)=0\)

=>\(\left[\begin{array}{l}x^2-4=0\\ x+\frac27=0\end{array}\right.\Rightarrow\left[\begin{array}{l}x^2=4\\ x=-\frac27\end{array}\right.\Rightarrow\left[\begin{array}{l}x=2\\ x=-2\\ x=-\frac27\end{array}\right.\)

d: \(\left(25-x^2\right)\left(5x-\frac59\right)=0\)

=>\(\left[\begin{array}{l}25-x^2=0\\ 5x-\frac59=0\end{array}\right.\Rightarrow\left[\begin{array}{l}x^2=25\\ 5x=\frac59\end{array}\right.\Rightarrow\left[\begin{array}{l}x=5\\ x=-5\\ x=\frac19\end{array}\right.\)

NV
1 tháng 9

4.

Ta có: \(S=2^1+3^{4.1+1}+4^{4.2+1}+\cdots+2024^{4.2002+1}\)

Do tính chất lũy thừa bậc 4n+1 của 1 số có tận cùng giống số đó, nên S có cùng chữ số tận cùng với tổng:

\(S_1=2+3+4+\cdots+2024=\frac{2024.2025}{2}-1=2049299\)

Vậy S có tận cùng bằng 9

a: Ta có: \(3x+\left(x-\frac{9}{20}\right)=-\frac{13}{40}\)

=>\(3x+x-\frac{9}{20}=-\frac{13}{40}\)

=>\(4x=-\frac{13}{40}+\frac{9}{20}=-\frac{13}{40}+\frac{18}{40}=\frac{5}{40}=\frac18\)

=>\(x=\frac18:4=\frac{1}{32}\)

b: \(x+\left(\frac14x-2,5\right)=-\frac{11}{20}\)

=>\(x+\frac14x-2,5=-\frac{11}{20}\)

=>\(1,25x=-0,55+2,5=1,95\)

=>\(x=\frac{1.95}{1.25}=\frac{195}{125}=\frac{39}{25}\)

c: \(\frac35x+\left(x+0,5\right)=-\frac{13}{15}\)

=>\(\frac35x+x+0,5=-\frac{13}{15}\)

=>\(\frac85x=-\frac{13}{15}-0,5=-\frac{26}{30}-\frac{15}{30}=-\frac{41}{30}\)

=>\(x=-\frac{41}{30}:\frac85=-\frac{41}{30}\cdot\frac58=\frac{-41}{6\cdot8}=-\frac{41}{48}\)

d: \(-\frac23x+\left(4x-\frac67\right)=\frac{9}{21}\)

=>\(-\frac23x+4x-\frac67=\frac37\)

=>\(\frac{10}{3}x=\frac37+\frac67=\frac97\)

=>\(x=\frac97:\frac{10}{3}=\frac97\cdot\frac{3}{10}=\frac{27}{70}\)

S
6 tháng 9

bài 11: câu a:

\(3x+\left(x-\frac{9}{20}\right)=-\frac{13}{40}\)

\(3x+x-\frac{9}{20}=-\frac{13}{40}\)

\(4x=-\frac{13}{40}+\frac{9}{20}\)

\(4x=-\frac{13}{40}+\frac{18}{40}\)

\(4x=\frac{5}{40}\)

\(4x=\frac18\)

\(x=\frac18:4=\frac18\cdot\frac14=\frac{1}{32}\)

b. \(x+\left(\frac14x-2,5\right)=-\frac{11}{20}\)

\(x+\frac14x-2,5=-\frac{11}{20}\)

\(\frac54x-2,5=-\frac{11}{20}\)

\(\frac54x=-\frac{11}{20}+2,5\)

\(\frac54x=\frac{39}{20}\)

\(x=\frac{39}{20}:\frac54=\frac{39}{20}\cdot\frac45=\frac{39}{25}\)

c. \(\frac35x+\left(x+0,5\right)=-\frac{13}{15}\)

\(\frac35x+x+0,5=-\frac{13}{15}\)

\(\frac85x+\frac12=-\frac{13}{15}\)

\(\frac85x=-\frac{13}{15}-\frac12\)

\(\frac85x=-\frac{41}{30}\)

\(x=-\frac{41}{30}:\frac85=-\frac{41}{30}\cdot\frac58=-\frac{41}{48}\)

\(d.-\frac23x+\left(4x-\frac67\right)=\frac{9}{21}\)

\(-\frac23x+4x-\frac67=\frac{9}{21}\)

\(\frac{10}{3}x=\frac97\)

\(x=\frac97:\frac{10}{3}=\frac97\cdot\frac{3}{10}=\frac{27}{70}\)


Ta có: tia CD nằm giữa hai tia CF và CB

=>\(\hat{BCF}=\hat{BCD}+\hat{FCD}=20^0+50^0=70^0\)

Ta có: \(\hat{BCF}=\hat{ABC}\left(=70^0\right)\)

mà hai góc này là hai góc ở vị trí so le trong

nên AB//CF
Ta có: \(\hat{EDC}+\hat{DCF}=130^0+50^0=180^0\)

mà hai góc này là hai góc ở vị trí trong cùng phía

nên ED//CF

Ta có: AB//CF

ED//CF

Do đó: AB//DE

20 tháng 8

cảm ơn !

Bài 8:

Chu vi đáy là:

3,5+3,5+3+6=7+9=16(cm)

Diện tích xung quanh là: \(16\cdot11,5=184\left(\operatorname{cm}^2\right)\)

Bài 9:

Diện tích đáy là:

\(S=\frac12\cdot7\cdot24=12\cdot7=84\left(m^2\right)\)

Thể tích của khối bê tông là:

\(84\cdot22=1848\left(m^3\right)\)

Số tiền phải trả là:

\(1848\cdot2500000=4620000000\) (đồng)