giải giúp mk vs mk sắp thi rùi!!!
1. a. Cho P=√x√xy+√x+3+√y√yz+√y+1+3√z√xz+3√z+3xxy+x+3+yyz+y+1+3zxz+3z+3 và xyz =9.
Tính √10P−110P−1
b. Cho x,y,z >0 thỏa mãn: x+y+z + √xyzxyz =4 .
Tính B= √x(4−y)(4−z)+√y(4−z)(4−x)+√z(4−x(4−y))x(4−y)(4−z)+y(4−z)(4−x)+z(4−x(4−y))
2. a. giải phương trình x2(x+2)2+3=3x2−6xx2(x+2)2+3=3x2−6x
b. {x2+y2+xy+1=2xx(x+y)2+x−2=2y2{x2+y2+xy+1=2xx(x+y)2+x−2=2y2
3. a.Tìm tất cả các...
Đọc tiếp
giải giúp mk vs mk sắp thi rùi!!!
1. a. Cho P=√x√xy+√x+3+√y√yz+√y+1+3√z√xz+3√z+3xxy+x+3+yyz+y+1+3zxz+3z+3 và xyz =9.
Tính √10P−110P−1
b. Cho x,y,z >0 thỏa mãn: x+y+z + √xyzxyz =4 .
Tính B= √x(4−y)(4−z)+√y(4−z)(4−x)+√z(4−x(4−y))x(4−y)(4−z)+y(4−z)(4−x)+z(4−x(4−y))
2. a. giải phương trình x2(x+2)2+3=3x2−6xx2(x+2)2+3=3x2−6x
b. {x2+y2+xy+1=2xx(x+y)2+x−2=2y2{x2+y2+xy+1=2xx(x+y)2+x−2=2y2
3. a.Tìm tất cả các nghiệm nguyên của phương trình x2+x+2y2+y=2xy2+xy+3x2+x+2y2+y=2xy2+xy+3
b. CMR: a31+a32+a33+....+a3na13+a23+a33+....+an3 chia hết cho 3 biết a1,a2,a3,...,ana1,a2,a3,...,an là các chữ số của 2019201820192018
4. Cho tam giác MNP có 3 góc M, N, P nhọn, nội tiếp đường tròn tâm O bán kính R. Gọi Q là trung điểm của NP và các đường cao MD, NE, PF của tam giác MNP cắt nhau tại H.
a. MH =2OQ
b. Nếu MN+MP = 2NP thì sin N+ sin P = 2sinM
c. ME.FH +MF .HE = R2√2R22 biết NP = R√2R2
5. Cho a,b,c dương thỏa mãn 1ab+1bc+1ca=31ab+1bc+1ca=3 . Tìm GTNN của P= ab2a+b+bc2b+c+ca2c+a
1, Phương trình hoành độ giao điểm của \(\left(P\right)\)và \(\left(d\right)\)là:
\(-x^2=mx-1\)
\(\Leftrightarrow x^2+mx-1=0\)(1)
Phương trình có hệ số \(a.c=1.\left(-1\right)=-1< 0\)nên luôn có hai nghiệm phân biệt.
Do đó \(\left(P\right)\)luôn cắt \(\left(d\right)\)tại hai điểm phân biệt \(A,B\).
2, Phương trình (1) luôn có hai nghiệm phân biệt \(x_1,x_2\).
Theo định lí Viete ta có:
\(\hept{\begin{cases}x_1+x_2=-m\\x_1x_2=-1\end{cases}}\)
\(x_1^3+x_2^3=\left(x_1+x_2\right)^3-3x_1x_2\left(x_1+x_2\right)=-m^3-3.\left(-1\right).\left(-m\right)\)
\(=-m^3-3m=-4\)
\(\Leftrightarrow m^3+3m-4=0\)
\(\Leftrightarrow\left(m-1\right)\left(m^2+m+4\right)=0\)
\(\Leftrightarrow m-1=0\)(vì \(m^2+m+4=m^2+m+\frac{1}{4}+\frac{15}{4}=\left(m+\frac{1}{2}\right)^2+\frac{15}{4}>0\))
\(\Leftrightarrow m=1\).