Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A = 5x(x - y) - y(5x - y)
A = 5x2 - 5xy - 5xy + y2
A = 5x2 - 10xy + y2 (1)
Thay x = -1; y = 3 vào (1), ta có:
5.(-1)2 - 10.(-1).3 + 32 = 44
B = 4y(x2 - 3xy + 3y2) - 2xy(2x - 6y - 3)
B = 4x2y - 12x2 + 12y3 - 4x2y + 12xy2 + 6xy
B = 12y3 + 6xy (1)
Thay x = 5; y = -1 vào (1), ta có:
12.(-1)3 + 6.5.(-1) = -42
C = 5x2(x - y2) + 3x(xy2 - y) - 5x3
C = 5x3 - 5x2y2 + 3x2y2 - 3xy - 5x3
C = -2x2y2 - 3xy (1)
Thay x = -2; y = -5 vào (1), ta có:
-2.(-2)2.(-5)2 - 3.(-2).(-5) = -230
D = 6x2(y2 - xy + 2x2y) - 3xy(2xy - x2 + 4x3)
D = 6x2y2 - 6x3y + 12x4y - 6x2y2 + 3x3y - 12x4y
D = -3x3y (1)
Thay x = 11; y = -1 vào (1), ta có:
-3.113.(-1) = 3993
1
a, 4x2+4x+2
= 2x2+2x2+2x+2x+2
= 2x2+(2x2+2x)+(2x+2)
= 2x2+ 2x(x+1)+2(x+1)
= 2x2+(2x+2)(x+1)
= 2x2+2(x+1)(x+1)
=2x2+2(x+1)2
Để 2x2+2(x+1)2=0
=>\(\left\{{}\begin{matrix}2x^2=0\\2\left(x+1\right)^2=0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x^2=0\\\left(x+1\right)^2=0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x=0\\x+1=0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x=0\\x=-1\end{matrix}\right.\)(vô lý)
=> đa thức 4x2+4x+2 vô nghiệm
a: \(M=x^2y^3+xy^2+2x^3+2.25-2x^2y^3+\dfrac{1}{2}xy^2-3x^2+\dfrac{1}{3}\)
\(=-x^2y^3+\dfrac{3}{2}xy^2-3x^2+2x^3+\dfrac{31}{12}\)
b: \(M=6x^3y^3-5x^2y+x^4y-1.5-\dfrac{2}{5}+5x^3y^3-x^4y+7x^2y\)
\(=11x^3y^3+2x^2y-\dfrac{19}{10}\)
Bài làm:
Ta có: \(A=15x^2y^3+7x^2-8x^3y^2-12x^2+11x^3y^2-12x^2y^3\)
\(A=3x^2y^3+3x^3y^2-5x^2\)
=> Bậc của đa thức A là 5
\(B=3x^5y+\frac{1}{3}xy^4+\frac{3}{4}x^2y^3-\frac{1}{2}x^5y+2xy^4-x^2y^3\)
\(B=\frac{5}{2}x^5y+\frac{7}{3}xy^4-\frac{1}{4}x^2y^3\)
=> Bậc của đa thức B là 6
\(A=15x^2y^3+7x^2-8x^3y^2-12x^2+11x^3y^2-12x^2y^3\)
\(A=3x^2y^3-5x^2+3x^3y^2\)
Xét bậc của từng hạng tử :
3x2y3 có bậc 5
-5x2 có bậc 2
3x3y2 có bậc 5
=> Bậc của A là 5
\(B=3x^5y+\frac{1}{3}xy^4+\frac{3}{4}x^2y^3-\frac{1}{2}x^5y+2xy^4-x^2y^3\)
\(B=\frac{5}{2}x^5y+\frac{7}{3}xy^4-\frac{1}{4}x^2y^3\)
Xét bậc từng hạng tử
5/2 . x5y có bậc 6
7/3 xy4 có bậc 5
-1/4 x2y3 có bậc 5
=> Bậc của B là 6
I . Trắc Nghiệm 1B . 2D . 3C . 5A II . Tự luận 2,a,Ta có: A+(x22y-2xy22+5xy+1)=-2x22y+xy22-xy-1 ⇔⇔ A=(-2x22y+xy22-xy-1) - (x22y-2xy22+5xy+1) =-2x22y+xy22-xy-1 - x22y+2xy22-5xy-1 =(-2x22y - x22y) + (xy22+ 2xy22) + (-xy - 5xy ) + (-1 - 1) = -3x22y + 3xy22 - 6xy - 2 b, thay x=1,y=2 vào đa thức A Ta có A= -3x22y + 3xy22 - 6xy - 2 = -3 . 122 . 2 + 3 .1 . 222 - 6 . 1 . 2 -2 = -6 + 12 - 12 - 2 = -8 3,Sắp xếp f(x) =9-x55+4x-2x33+x22-7x44 =9-x55-7x44-2x33+x22+4x g(x) = x55-9+2x22+7x44+2x33-3x =-9+x55+7x44+2x33+2x22-3x b,f(x) + g(x)=(9-x55-7x44-2x33+x22+4x) + (-9+x55+7x44+2x33+2x22-3x) =9-x55-7x44-2x33+x22+4x-9+x55+7x44+2x33+2x22-3x =(9-9)+(-x55+x55)+(-7x44+7x44)+(-2x33+2x33)+(x22+2x22)+(4x-3x) = 3x22 + x g(x)-f(x)=(-9+x55+7x44+2x33+2x22-3x) - (9-x55-7x44-2x33+x22+4x) =-9+x55+7x44+2x33+2x22-3x-9+x55+7x44+2x 33-x22-4x =(-9-9)+(x55+x55)+(7x44+7x44)+(2x33+2x33)+(2x22-x22)+(3x-4x) = -18 + 2x55 + 14x44 + 4x33 + x22 - x
a,\(\left(3x^2.y^2\right).\left(-2xy^2\right)\)
\(=\left(-6\right).x^3.y^4\)
Hok tốt
a) \(\left(\dfrac{1}{3}x^2y\right).\left(15xy^3\right)=5x^3y^4\)
b) \(\left(\dfrac{3}{5}x^3y\right).\left(-2x^3y^5\right)=-\dfrac{6}{5}x^6y^6\)
c) \(\left(-\dfrac{1}{2}x^2y\right).\left(2xy^3\right).\left(-\dfrac{5}{8}x^3y^3\right)=\dfrac{5}{8}x^6y^7\)