![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
Bài 2:
Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow\begin{cases}a=kb\\c=kd\end{cases}\)
=> \(\frac{5a+3b}{5a-3b}=\frac{5kb+3b}{5kb-3b}=\frac{b\left(5k+3\right)}{b\left(5k-3\right)}=\frac{5k+3}{5k-3}\left(1\right)\)
\(\frac{5c+3d}{5c-3d}=\frac{5kd+3d}{5kd-3d}=\frac{d\left(5k+3\right)}{d\left(5k-3\right)}=\frac{5k+3}{5k-3}\left(2\right)\)
Từ (1) và (2) => \(\frac{5a+3b}{5a-3b}=\frac{5c+3d}{5c-3d}\)
Bài 3:
Đặt \(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=k\)
=> \(\frac{a}{b}.\frac{b}{c}.\frac{c}{d}=k^3\)
=> \(\frac{a}{d}=k^3\) (1)
Lại có: \(\frac{a+b+c}{b+c+d}=\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=k\)
=> \(\left(\frac{a+b+c}{b+c+d}\right)^3=k^3\) (2)
Từ (1) và (2) => \(\frac{a}{d}=\left(\frac{a+b+c}{b+c+d}\right)^3\)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(\frac{2}{13}< ...< ...< ...< ...< ...< \frac{5}{17}\)
\(\frac{10}{65}< ...< ...< ...< ...< ...< \frac{10}{34}\)
Vậy : ta có 5/32;10/63;5/31;10/61;1/6
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
bài 17:
a: Xét ΔBAD và ΔBED có
BA=BE
\(\widehat{ABD}=\widehat{EBD}\)
BD chung
Do đó: ΔBAD=ΔBED
b: Ta có: ΔBAD=ΔBED
=>DA=DE
Ta có: ΔBAD=ΔBED
=>\(\widehat{BAD}=\widehat{BED}\)
mà \(\widehat{BAD}=90^0\)
nên \(\widehat{BED}=90^0\)
=>DE\(\perp\)BC
c: ta có: BA=BE
=>B nằm trên đường trung trực của AE(1)
Ta có: DA=DE
=>D nằm trên đường trung trực của AE(2)
Từ (1) và (2) suy ra BD là đường trung trực của AE
=>BD\(\perp\)AE tại I là trung điểm của AE
d: Xét ΔDAF vuông tại A và ΔDEC vuông tại E có
DA=DE
AF=EC
Do đó: ΔDAF=ΔDEC
=>\(\widehat{ADF}=\widehat{EDC}\)
mà \(\widehat{EDC}+\widehat{ADE}=180^0\)(hai góc kề bù)
nên \(\widehat{ADF}+\widehat{ADE}=180^0\)
=>D,E,F thẳng hàng
![](https://rs.olm.vn/images/avt/0.png?1311)
1/
a, xem lại đề
b, \(\sqrt{6}+\sqrt{12}+\sqrt{30}+\sqrt{56}< \sqrt{6,25}+\sqrt{12,25}+\sqrt{30,25}+\sqrt{56,26}=2,5+3,5+5,5+7,5=19\)
2/
a, \(\sqrt{26}+\sqrt{17}>\sqrt{25}+\sqrt{16}=5+4=9\)
b, xem lại
4/
\(B=\frac{\sqrt{x}+1}{\sqrt{x}-2}=\frac{\sqrt{x}-2+3}{\sqrt{x}-2}=1+\frac{3}{\sqrt{x}-2}\)
Để \(B\in Z\Leftrightarrow\sqrt{x}-2\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)
Ta có bảng
\(\sqrt{x}-2\) | 1 | -1 | 3 | -3 |
\(\sqrt{x}\) | 3 | 1 | 5 | -1 |
x | loại | 1 | loại | loai |
Vậy...
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(\frac{5-2x}{3}=\frac{4x-1}{-5}\)
-5(5-2x) = 3(4x-1)
-25 + 10x = 12x - 3
10x - 12x = -3 + 25
-2x = 22
x= -11
Nhân chéo như trên rồi tự làm nha
Học tốt~
\(xy+yz+zx=xyz\)
\(\Leftrightarrow\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=1\)
\(1=\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\le\frac{1}{x}+\frac{1}{x}+\frac{1}{x}=\frac{3}{x}\Rightarrow x\le3\).
Với \(x=3\):
\(3y+3z+yz=3yz\)
\(\Leftrightarrow4yz-6y-6z=0\)
\(\Leftrightarrow\left(2y-3\right)\left(2z-3\right)=9\)
mà \(y,z\)là số tự nhiên nên \(2y-3,2z-3\)là các ước của \(9\).
Ta có bảng giá trị:
Với \(x=2\):
Ta làm tương tự thu được nghiệm là: \(\left(y,z\right)\in\left\{\left(3,6\right),\left(4,4\right)\right\}\).
Với \(x=1\)dễ thấy không tồn tại \(\left(y,z\right)\)thỏa mãn.
Vậy ta có các nghiệm là: \(\left(x,y,z\right)\in\left\{\left(3,3,3\right),\left(2,3,6\right),\left(2,4,4\right)\right\}\).