Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Ta có: \(\frac{a^3+b^3}{a^3+c^3}=\frac{\left(a+b\right)\left(a^2-ab+b^2\right)}{\left(a+c\right)\left(a^2-ac+c^2\right)}\)
Mà: a = b + c => c = a - b => \(\frac{a^3+b^3}{a^3+c^3}=\frac{\left(a+b\right)\left(a^2-ab+b^2\right)}{\left(a+c\right)\left(a^2-ac+c^2\right)}\)
=\(\frac{\left(a+b\right)\left(a^2-ab+b^2\right)}{\left(a+c\right)\left[a^2-a\left(a-b\right)+\left(a-b\right)^2\right]}\)
\(=\frac{\left(a+b\right)\left(a^2-ab+b^2\right)}{\left(a+c\right)\left[a^2-a^2+ab+\left(a^2-2ab+b^2\right)\right]}\)
= \(\frac{\left(a+b\right)\left(a^2-ab+b^2\right)}{\left(a+c\right)\left(a^2-a^2+ab+a^2-2ab+b^2\right)}\)
\(=\frac{\left(a+b\right)\left(a^2-ab+b^2\right)}{\left(a+c\right)\left(a^2-ab+b^2\right)}=\frac{a+b}{a+c}\)
Vây: \(\frac{a^3+b^3}{a^3+c^3}=\frac{a+b}{a+c}\)
Chúc bạn học tốt!Tick cho mình nhé!
a/
\(a^2+b^2+c^2+29ab+bc+ca=3\left(ab+bc+ca\right)\)
\(\Leftrightarrow a^2+b^2+c^2-ab-bc-ca=0\)
\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2bc-2ca=0\)
\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}a-b=0\\b-c=0\\c-a=0\end{matrix}\right.\) \(\Rightarrow a=b=c\)
b/ \(a^3+b^3+c^3=\left(a+b\right)^3+c^3-3ab\left(a+b\right)\)
\(=\left(a+b+c\right)\left(\left(a+b\right)^2-c\left(a+b\right)+c^2\right)-3ab\left(a+b\right)\)
\(=-3ab\left(a+b\right)=-3ab\left(-c\right)=3abc\)
c/ Không, vì \(a=b=c\ne\) thì \(a^3+b^3+c^3=3a^3=3abc\) vẫn đúng
Đặt:
\(\left\{{}\begin{matrix}b+c-a=x\\a+c-b=y\\a+b-c=z\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x+y=2c\\y+z=2a\\x+z=2b\end{matrix}\right.\)
\(A=\dfrac{a}{b+c-a}+\dfrac{b}{a+c-b}+\dfrac{c}{a+b-c}\)
\(2A=\dfrac{2a}{b+c-a}+\dfrac{2b}{a+c-b}+\dfrac{2c}{a+b-c}\)
\(=\dfrac{y+z}{x}+\dfrac{x+z}{y}+\dfrac{x+y}{z}=\left(\dfrac{x}{y}+\dfrac{y}{x}\right)+\left(\dfrac{z}{x}+\dfrac{x}{z}\right)+\left(\dfrac{y}{z}+\dfrac{z}{y}\right)\ge2\sqrt{\dfrac{xy}{xy}}+2\sqrt{\dfrac{yz}{yz}}+2\sqrt{\dfrac{xz}{xz}}=6\) (AM-GM)
\(\Rightarrow2A\ge6\Leftrightarrow A\ge3\)
\("="\Leftrightarrow a=b=c\) hay tam giác đã cho là tam giác đều
Áp dụng liên tiếp bất đẳng thức Cauchy-Schwarz ta có:
\(\dfrac{a^2+3}{b+c}+\dfrac{b^2+3}{c+a}+\dfrac{c^2+3}{a+b}\)
\(=\dfrac{a^2}{b+c}+\dfrac{3}{b+c}+\dfrac{b^2}{c+a}+\dfrac{3}{c+a}+\dfrac{c^2}{a+b}+\dfrac{3}{a+b}\)
\(=\left(\dfrac{a^2}{b+c}+\dfrac{b^2}{c+a}+\dfrac{c^2}{a+b}\right)+3\left(\dfrac{1}{b+c}+\dfrac{1}{c+a}+\dfrac{1}{a+b}\right)\)
\(\ge\dfrac{\left(a+b+c\right)^2}{2\left(a+b+c\right)}+3.\dfrac{\left(1+1+1\right)^2}{2\left(a+b+c\right)}\)
\(=\dfrac{a+b+c}{2}+\dfrac{27}{2\left(a+b+c\right)}=\dfrac{3}{2}+\dfrac{27}{6}=6\)
Nếu \(\dfrac{a^3+b^3}{a^3+c^3}=\dfrac{a+b}{a+c}\)
\(\Rightarrow\left(a^3+b^3\right)\left(a+c\right)=\left(a^3+c^3\right)\left(a+b\right)\)
\(\Rightarrow\dfrac{a^3+b^3}{a+b}=\dfrac{a^3+c^3}{a+c}\)
\(\Rightarrow\dfrac{\left(a+b\right)\left(a^2-ab+b^2\right)}{a+b}=\dfrac{\left(a+c\right)\left(a^2-ac+c^2\right)}{a+c}\)
\(\Rightarrow a^2-ab+b^2=a^2-ac+c^2\)
\(\Rightarrow a^2-ab+b^2-a^2+ac-c^2=0\)
\(\Rightarrow b^2-c^2-ab+ac=0\)
\(\Rightarrow\left(b-c\right)\left(b+c\right)-a\left(b-c\right)=0\)
\(\Rightarrow\left(b-c\right)\left(b+c-a\right)=0\)
Thay a = b + c vào ta được
\(\Rightarrow\left(b-c\right)\left(b+c-b-c\right)=0\)
\(\Rightarrow\left(b-c\right).0=0\)
\(\Rightarrow0=0\) ( Hợp lí )
Vậy \(\dfrac{a^3+b^3}{a^3+c^3}=\dfrac{a+b}{a+c}\) với a = b + c
Akai Haruma em có cách khác cô nè:)
\(\frac{a^3-b^3}{a^3+c^3}=\frac{\left(a-b\right)\left(a^2+ab+b^2\right)}{\left(a+c\right)\left(a^2-ac+c^2\right)}\) (1)
Cần chứng minh \(a^2+ab+b^2=a^2-ac+c^2\Leftrightarrow ab+b^2=c^2-ac\)
\(\Leftrightarrow b\left(a+b\right)=c\left(c-a\right)\Leftrightarrow b\left(a+b\right)=\left(a+b\right)\left(a+b-a\right)\)
\(\Leftrightarrow b\left(a+b\right)=b\left(a+b\right)\) (đúng)
Do vậy \(\frac{a^3-b^3}{a^3+c^3}=\frac{\left(a-b\right)\left(a^2+ab+b^2\right)}{\left(a+c\right)\left(a^2-ac+c^2\right)}=\frac{a-b}{a+c}^{\left(đpcm\right)}\)
Lời giải:
Ta có:
\(a^3-b^3=(a-b)(a^2+ab+b^2)\)
\(a^3+c^3=(a+c)(a^2-ac+c^2)=(a+c)[a^2-a(a+b)+(a+b)^2]\) (thay $c=a+b$)
\(=(a+c)(a^2-a^2-ab+a^2+2ab+b^2)=(a+c)(a^2+ab+b^2)\)
Do đó:
\(\frac{a^3-b^3}{a^3+c^3}=\frac{(a-b)(a^2+ab+b^2)}{(a+c)(a^2+ab+b^2)}=\frac{a-b}{a+c}\)
Ta có đpcm.
Áp dụng BĐT Bunhiacopxki:
\(\left(a^3+b^2+c\right)\left(\frac{1}{a}+1+c\right)\ge\left(a+b+c\right)^2=9\)
\(\Leftrightarrow\frac{\left(a^3+b^2+c\right)\left(ac+a+1\right)}{a}\ge9\Rightarrow\frac{a}{a^3+b^2+c}\le\frac{ac+a+1}{9}\)
Tương tự ta có:
\(\frac{b}{b^3+c^2+a}\le\frac{ab+b+1}{9}\) ; \(\frac{c}{c^3+a^2+b}\le\frac{bc+c+1}{9}\)
Cộng vế với vế:
\(VT\le\frac{a+b+c+ab+bc+ca+3}{9}=\frac{6+ab+bc+ca}{9}\)
\(VT\le\frac{6+\frac{1}{3}\left(a+b+c\right)^2}{9}=1\)
Dấu "=" xảy ra khi \(a=b=c=1\)
Bạn coi lại đề, sao tất cả các mẫu số đều là c thế kia? Có vẻ ko hợp lý