Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(\Leftrightarrow\dfrac{23}{5}\cdot\dfrac{50}{23}< =x< =\dfrac{-13}{5}:\dfrac{7}{5}\)
=>10<=x<=-13/7
hay \(x\in\varnothing\)
b: \(\Leftrightarrow-\dfrac{13}{3}\cdot\dfrac{1}{3}< =x< =\dfrac{-2}{3}\cdot\dfrac{-11}{12}\)
=>-13/9<=x<=22/36
hay \(x\in\left\{-1;0\right\}\)
a, \(\dfrac{3}{5}-4.\left|\dfrac{1}{5}-\dfrac{3}{4}x\right|=\dfrac{1}{3}\)
\(\Rightarrow4\left|\dfrac{1}{5}-\dfrac{3}{4}x\right|=\dfrac{4}{15}\)
\(\Rightarrow\left|\dfrac{1}{5}-\dfrac{3}{4}x\right|=\dfrac{1}{15}\)
\(\Rightarrow\dfrac{1}{5}-\dfrac{3}{4}x\in\left\{-\dfrac{1}{15};\dfrac{1}{15}\right\}\)
\(\Rightarrow\dfrac{3}{4}x\in\left\{\dfrac{4}{15};\dfrac{2}{15}\right\}\Rightarrow x\in\left\{\dfrac{16}{45};\dfrac{8}{45}\right\}\)
b, \(\left|2\dfrac{2}{9}-x\right|=\dfrac{1}{12}+\dfrac{1}{20}+\dfrac{1}{30}+\dfrac{1}{42}+\dfrac{1}{56}+\dfrac{1}{72}\)
\(\Rightarrow\left|2\dfrac{2}{9}-x\right|=\dfrac{1}{3.4}+\dfrac{1}{4.5}+\dfrac{1}{5.6}+\dfrac{1}{6.7}+\dfrac{1}{7.8}+\dfrac{1}{8.9}\)
\(\Rightarrow\left|2\dfrac{2}{9}-x\right|=\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+....+\dfrac{1}{8}-\dfrac{1}{9}\)
(do \(\dfrac{1}{a.\left(a+1\right)}=\dfrac{1}{a}-\dfrac{1}{a+1}\) với mọi \(a\in N\)*)
\(\Rightarrow\left|2\dfrac{2}{9}-x\right|=\dfrac{1}{3}-\dfrac{1}{9}\)
\(\Rightarrow\left|2\dfrac{2}{9}-x\right|=\dfrac{2}{9}\Rightarrow2\dfrac{2}{9}-x\in\left\{-\dfrac{2}{9};\dfrac{2}{9}\right\}\)
\(\Rightarrow x\in\left\{\dfrac{22}{9};2\right\}\)
c,\(\dfrac{1}{3}x+\dfrac{2}{5}\left(x-1\right)=0\)
\(\Rightarrow\dfrac{1}{3}x+\dfrac{2}{5}x-\dfrac{2}{5}=0\)
\(\Rightarrow\dfrac{11}{15}x=\dfrac{2}{5}\Rightarrow x=\dfrac{6}{11}\)
d, \(60\%x+\dfrac{2}{3}x=\dfrac{1}{3}.6\dfrac{1}{3}\)
\(\Rightarrow\dfrac{3}{5}x+\dfrac{2}{3}x=\dfrac{1}{3}.\dfrac{19}{3}\)
\(\Rightarrow\dfrac{19}{15}x=\dfrac{19}{9}\Rightarrow x=\dfrac{5}{3}\)
Chúc bạn học tốt!!!
\(\dfrac{6}{2x+1}=\dfrac{2}{7}\)
=> 2(2x+1) = 6.7
4x+2=42
4x=40
x=10
Vậy x=10
a)\(\dfrac{6}{2x+1}=\dfrac{2}{7}\\ =>6.7=2.\left(2x+1\right)\\ =>2x+1=\dfrac{6.7}{2}=\dfrac{42}{2}=21\\ =>2x=21-1=20\\ =>x=\dfrac{20}{2}=10\)
b) \(\dfrac{24}{7x-3}=-\dfrac{4}{25}\\ =>24.25=-4.\left(7x-3\right)\\ =>7x-3=\dfrac{24.25}{-4}=-150\\ =>7x=-150+3=-147\\ =>x=\dfrac{-147}{7}=-21\)
c) \(\dfrac{4}{x-6}=\dfrac{y}{24}=-\dfrac{12}{18}\\ =>x-6=\dfrac{4.18}{-12}=-6\\ =>x=-6+6=0\\ y=\dfrac{-12.24}{18}=-16\)
d) \(-\dfrac{1}{5}\le\dfrac{x}{8}\le\dfrac{1}{4}\\ < =>-\dfrac{8}{40}\le-\dfrac{5x}{40}\le\dfrac{10}{40}\\ =>-8\le-5x\le10\\ Mà:-8< -5.1< -5.0< -5.\left(-1\right)< -5.\left(-2\right)=10\\ =>x\in\left\{-2;-1;0;1\right\}\)
e) \(\dfrac{x+46}{20}=x\dfrac{2}{5}\\ < =>\dfrac{x+46}{20}=\dfrac{5x+2}{5}\\ =>5\left(x+46\right)=20\left(5x+2\right)\\ < =>5x+230=100x+40\\ < =>230-40=100x-5x\\ < =>190=95x\\ =>x=\dfrac{190}{95}=2\)
f) \(y\dfrac{5}{y}=\dfrac{56}{y}\\ < =>\dfrac{y^2+5}{y}=\dfrac{56}{y}\\ =>y\left(y^2+5\right)=56y\\ =>y^2+5=\dfrac{56y}{y}=56\\ =>y^2=56-5=51\\ =>y=\sqrt{51}\)
Bài 2:
a: Để x>0 thì a-3>0
=>a>3
b: Để x<0 thì a-3<0
=>a<3
c: Để x=0 thì a-3=0
=>a=3
Bài 1:
\(=\left(\dfrac{1}{3}+\dfrac{3}{5}+\dfrac{1}{15}\right)+\left(\dfrac{-3}{4}-\dfrac{2}{9}-\dfrac{1}{36}\right)+\dfrac{1}{64}\)
\(=\dfrac{5+9+1}{15}+\dfrac{-27-8-1}{36}+\dfrac{1}{64}\)
\(=\dfrac{1}{64}\)
a: \(\Leftrightarrow-\dfrac{2}{3}\cdot\dfrac{4-6-9}{12}\ge x\ge-\dfrac{13}{3}\cdot\dfrac{3-1}{6}\)
\(\Leftrightarrow-\dfrac{2}{3}\cdot\dfrac{-11}{12}\ge x\ge\dfrac{-13}{3}\cdot\dfrac{1}{3}\)
\(\Leftrightarrow\dfrac{22}{36}\ge x\ge\dfrac{-13}{9}\)
mà x là số nguyên
nên \(x\in\left\{0;-1\right\}\)
b: \(\Leftrightarrow\dfrac{21}{100}+\dfrac{75}{100}-\dfrac{220}{100}>=2x-1>=-3-\dfrac{1}{2}+3+\dfrac{1}{5}\)
\(\Leftrightarrow\dfrac{-124}{100}\ge2x-1\ge\dfrac{-3}{10}\)
\(\Leftrightarrow-\dfrac{124}{100}+1\ge2x>=\dfrac{-3}{10}+1\)
\(\Leftrightarrow\dfrac{-3}{25}\ge2x\ge\dfrac{7}{10}\)(vô lý)
=>x không có giá trị
c: \(\Leftrightarrow43+\dfrac{1}{2}-39-\dfrac{1}{5}\le-3x+4\le9+\dfrac{1}{5}+50+\dfrac{1}{7}\)
\(\Leftrightarrow3+\dfrac{3}{10}\le-3x+4\le59+\dfrac{12}{35}\)
\(\Leftrightarrow\dfrac{33}{10}-4\le-3x\le59+\dfrac{12}{35}-4\)
\(\Leftrightarrow\dfrac{-7}{10}\le-3x\le\dfrac{1937}{35}\)
\(\Leftrightarrow\dfrac{7}{30}\ge x\ge-\dfrac{1937}{105}\)
mà x là số nguyên
nên \(x\in\left\{0;-1;-2;...;-18\right\}\)
a: =>1/6x=-49/60
=>x=-49/60:1/6=-49/60*6=-49/10
b: =>3/2x-1/5=3/2 hoặc 3/2x-1/5=-3/2
=>x=17/15 hoặc x=-13/15
c: =>1,25-4/5x=-5
=>4/5x=1,25+5=6,25
=>x=125/16
d: =>2^x*17=544
=>2^x=32
=>x=5
i: =>1/3x-4=4/5 hoặc 1/3x-4=-4/5
=>1/3x=4,8 hoặc 1/3x=-0,8+4=3,2
=>x=14,4 hoặc x=9,6
j: =>(2x-1)(2x+1)=0
=>x=1/2 hoặc x=-1/2
a: \(\left|x\right|=3+\dfrac{1}{5}=\dfrac{16}{5}\)
mà x<0
nên x=-16/5
b: \(\left|x\right|=-2.1\)
nên \(x\in\varnothing\)
c: \(\left|x-3.5\right|=5\)
=>x-3,5=5 hoặc x-3,5=-5
=>x=8,5 hoặc x=-1,5
d: \(\left|x+\dfrac{3}{4}\right|-\dfrac{1}{2}=0\)
=>|x+3/4|=1/2
=>x+3/4=1/2 hoặc x+3/4=-1/2
=>x=-1/4 hoặc x=-5/4
Lời giải:
Ta có:
\(A=3\left(\frac{x}{y}+\frac{y}{x}\right)-\left (\frac{x^2}{y^2}+\frac{y^2}{x^2}\right)\)
\(\Leftrightarrow A=3\left ( \frac{x}{y}+\frac{y}{x} \right )-\left ( \frac{x}{y}+\frac{y}{x} \right )^2+2\)
Đặt \(t=\frac{x}{y}+\frac{y}{x}\Rightarrow A=3t-t^2+2\)
Ta cần cm \(A\leq 4\Leftrightarrow 3t-t^2-2\leq 0\)
\(\Leftrightarrow (t-1)(t-2)\geq 0\) \((\star)\)
Xét \(t=\frac{x}{y}+\frac{y}{x}\).
Nếu \(x,y\) cùng dấu thì \(xy>0\Rightarrow t=\frac{x^2+y^2}{xy}=\frac{(x-y)^2}{xy}+2\geq 2\)
\(\Rightarrow (t-1)(t-2)\geq 0\)
Nếu $x,y$ khác dấu thì \(xy<0\Rightarrow t=\frac{x^2+y^2}{xy}=\frac{(x+y)^2}{xy}-2\leq-2\)
\(\Rightarrow (t-1)(t-2)\geq 0\)
Vậy, BĐT \((\star)\) luôn đúng, do đó ta có đpcm.
Bài 1:
\(A=\dfrac{\dfrac{2}{5}-\dfrac{2}{9}+\dfrac{2}{11}}{\dfrac{7}{5}-\dfrac{7}{9}+\dfrac{7}{11}}:\dfrac{\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{5}}{\dfrac{7}{6}-\dfrac{7}{8}+\dfrac{7}{10}}\)
\(A=\dfrac{2.\left(\dfrac{1}{5}-\dfrac{1}{9}+\dfrac{1}{11}\right)}{7.\left(\dfrac{1}{5}-\dfrac{1}{9}+\dfrac{1}{11}\right)}:\dfrac{\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{5}}{\dfrac{2}{7}.\left(\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{5}\right)}\)
\(A=\dfrac{2}{7}:\dfrac{2}{7}=1\)
Bài 2: Here
Chúc bạn học tốt!!!
1. Giải:
Gọi A =M : N
Ta có:M=\(\dfrac{\dfrac{2}{5}-\dfrac{2}{9}+\dfrac{2}{11}}{\dfrac{7}{5}-\dfrac{7}{9}+\dfrac{7}{11}}\)= \(\dfrac{2.\left(\dfrac{1}{5}-\dfrac{1}{9}+\dfrac{1}{11}\right)}{7.\left(\dfrac{1}{5}-\dfrac{1}{9}+\dfrac{1}{11}\right)}\)=\(\dfrac{2}{7}\)
N=\(\dfrac{\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{5}}{\dfrac{7}{6}-\dfrac{7}{8}+\dfrac{7}{10}}\)=\(\dfrac{2.\left(\dfrac{1}{6}-\dfrac{1}{8}+\dfrac{1}{10}\right)}{7.\left(\dfrac{1}{6}-\dfrac{1}{8}+\dfrac{1}{10}\right)}\)=\(\dfrac{2}{7}\)
Vậy A=M: N \(\Rightarrow\)A=\(\dfrac{2}{7}\):\(\dfrac{2}{7}\)=\(\dfrac{2}{7}\).\(\dfrac{7}{2}\)=\(\dfrac{2.7}{7.2}\)=1
2. Giải:
Với mọi x \(\in\)Q, ta luôn có \(x\) \(\le\) \(|x|\)(dấu bằng xảy ra khi x\(\ge\)0)
a)Nếu \(x+y\)\(\ge\)0 thì\(|x+y|=x+y\).
Vì \(x\le|x|,y\le|y|\)với mọi x, y\(\in\)Q nên:\(|x+y|=x+y\le|x|+|y|\)
b)Nếu x+y < 0 thì\(|x+y|=-\left(x+y\right)\)=\(-x-y\)
Mà -x\(\le\)\(|x|\), -y\(\le\)\(|y|\) nên: \(|x+y|\)= -x-y\(\le\)\(|x|+|y|\)
Vậy với mọi x, y\(\in\)Q ta đều có:\(|x+y|\le|x|+|y|\). Dấu bằng xảy ra khi x, y cùng dấu hoặc ít nhất có một số bằng 0.
tìm x
=>|x-1/2|<1/2-1/4=1/4
=>-1/4<x-1/2<1/4
=>1/4<x<3/4