K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 6 2019

a) \(f\left(x\right)=5x^3-7x^2+2x+5\)

\(\Rightarrow f\left(1\right)=5.1^3-7.1^2+2.1+5\)

\(\Rightarrow f\left(1\right)=5.1-7.1+2+5\)

\(\Rightarrow f\left(1\right)=5-7+7\)

\(\Rightarrow f\left(1\right)=5\)

Vậy f(1) = 5.

\(g\left(x\right)=7x^3-7x^2+2x+5\)

\(\Rightarrow g\left(\frac{1}{2}\right)=7.\left(\frac{1}{2}\right)^3-7.\left(\frac{1}{2}\right)^2+2.\frac{1}{2}+5\)

\(\Leftrightarrow g\left(\frac{1}{2}\right)=7.\frac{1}{8}-7.\frac{1}{4}+1+5\)

\(\Leftrightarrow g\left(\frac{1}{2}\right)=\frac{7}{8}-\frac{14}{8}+6\)

\(\Leftrightarrow g\left(\frac{1}{2}\right)=\frac{-7}{8}+\frac{48}{8}\)

\(\Leftrightarrow g\left(\frac{1}{2}\right)=\frac{41}{8}\)

Vậy \(g\left(\frac{1}{2}\right)=\frac{41}{8}\)

22 tháng 6 2019

\(h\left(x\right)=2x^3+4x+1\)

\(\Rightarrow h\left(0\right)=2.0^3+4.0+1\)

\(\Rightarrow h\left(0\right)=0+0+1\)

\(\Rightarrow h\left(0\right)=1\)

Vậy \(h\left(0\right)=1\)

8 tháng 9 2019

a) -4/5 + 5/2x = -3/10

5/2x = -3/10 + 4/5

5/2x = 1/5

5/2x = 1/2

x = 1/2 : 5/2

x = 1/5

b) 4/3 + 5/8 : x = 1/12

5/8x = 1/12 - 4/3

5/8x = -5/4

5 = -5/4.8x

5 = -10x

5/-10 = x

-1/2 = x

x = -1/2

c) (x - 1/3)(x - 2/5) = 0

x - 1/3 = 0 hoặc x - 2/5 = 0

x = 0 + 1/3         x = 0 + 2/5

x = 1/3               x = 2/5

8 tháng 9 2019

Bạn làm hộ mình bài 2 đc k ạ ?

5 tháng 7 2021

a) \(\left|4-x\right|+2x=3\)

<=> \(\left|4-x\right|=3-2x\)

<=> \(\orbr{\begin{cases}4-x=3-2x\left(x\le4\right)\\x-4=3-2x\left(x>4\right)\end{cases}}\)

<=> \(\orbr{\begin{cases}x=-1\left(tm\right)\\3x=7\end{cases}}\)

<=> \(\orbr{\begin{cases}x=-1\\x=\frac{7}{3}\left(ktm\right)\end{cases}}\)

Vậy x = -1

b) \(\left|x-7\right|+2x+5=6\)

<=> \(\left|x-7\right|=1-2x\)

<=> \(\orbr{\begin{cases}x-7=1-2x\left(đk:x\ge7\right)\\x-7=2x-1\left(đk:x< 7\right)\end{cases}}\)

<=> \(\orbr{\begin{cases}3x=8\\x=-6\left(tm\right)\end{cases}}\)

<=> \(\orbr{\begin{cases}x=\frac{8}{3}\left(ktm\right)\\x=-6\left(tm\right)\end{cases}}\)

Vậy x = -6

c) \(3x-\left|2x+1\right|=2\)

<=> \(\left|2x+1\right|=3x-2\)

<=> \(\orbr{\begin{cases}2x+1=3x-2\left(đk:x\ge-\frac{1}{2}\right)\\2x+1=2-3x\left(đk:x< -\frac{1}{2}\right)\end{cases}}\)

<=> \(\orbr{\begin{cases}x=3\left(tm\right)\\5x=1\end{cases}}\)

<=> \(\orbr{\begin{cases}x=3\\x=\frac{1}{5}\left(ktm\right)\end{cases}}\)

Vậy x = 3

d) \(\left|x+2\right|-x=2\)

<=> \(\left|x+2\right|=x+2\)

<=> \(\orbr{\begin{cases}x+2=x+2\left(đk:x\ge-2\right)\\x+2=-x-2\left(x< -2\right)\end{cases}}\)

<=> \(\orbr{\begin{cases}0x=0\\2x=-4\end{cases}}\)

<=> 0x = 0 (luôn đúng) và x = -2 (ktm)

Vậy x \(\ge\)-2

5 tháng 7 2021

e) \(\left|x-3\right|=21\)

<=> \(\orbr{\begin{cases}x-3=21\\3-x=21\end{cases}}\)

<=> \(\orbr{\begin{cases}x=24\\x=-18\end{cases}}\)

Vậy x = 24 hoặc x = -18

f) \(\left|2x+3\right|-\left|x-3\right|=0\)

<=> \(\left|2x+3\right|=\left|x-3\right|\)

<=> \(\orbr{\begin{cases}2x+3=x-3\\2x+3=3-x\end{cases}}\)

<=> \(\orbr{\begin{cases}x=-6\\3x=0\end{cases}}\)

<=> \(\orbr{\begin{cases}x=-6\\x=0\end{cases}}\)

Vậy x thuộc {-6; 0}

g) Ta có: \(\left|x+\frac{1}{8}\right|\ge0\forall x\)

          \(\left|x+\frac{2}{8}\right|\ge0\forall x\)

    \(\left|x+\frac{5}{8}\right|\ge0\forall x\)

=> VT = \(\left|x+\frac{1}{8}\right|+\left|x+\frac{2}{8}\right|+\left|x+\frac{5}{8}\right|\ge0\forall x\)

=> VP \(\ge0\) => \(4x\ge0\) => \(x\ge0\)

Do đó: \(x+\frac{1}{8}+x+\frac{2}{8}+x+\frac{5}{8}=4x\)

<=> \(3x+1=4x\) <=> \(x=1\left(tm\right)\)

Vậy x = 1

h) \(\left|x-2\right|-\left|2x+3\right|-x=-2\)

<=> \(\left|x-2\right|-\left|2x+3\right|=x-2\)(*)

Lập bảng xét dấu: 

x                     -3/2              2

x - 2        2 - x    |        2 - x    0        x - 2

2x + 3  -2x - 3   0      2x + 3  |          2x + 3

Xét x < -3/2 => pt (*) trở thành: 2 - x + 2x + 3 = x - 2

<=> x + 5 = x - 2 <=> 0x = -7 (vô lí)

Xét -3/2 \(\le\) x < 2 => pt (*) trở thành: 2 - x - 2x - 3 = x - 2

<=> 4x = 1 <=> x = 1/4 ((tm)

Xét x \(\ge\) 2 => pt (*) trở thành x - 2 - 2x - 3 = x - 2

<=> 2x = -3 <=>  x = -3/2 (ktm)

Vậy x = 1/4

i) |2x - 3| - x = |2 - x|

<=> |2x - 3| - |2 - x| = x (*)

Lập bảng xét dấu

x                    3/2               2

2x - 3   3 - 2x   0     2x - 3   |  2x - 3

2 - x     2 - x     |       2 - x    0   x - 2

Xét x < 3/2 => pt (*) trở thành: 3 - 2x - 2 + x =  x

<=> 2x = 1 <=> x = 1//2 ((tm)
Xét \(\frac{3}{2}\le x< 2\)=> pt (*) trở thành: 2x - 3 - 2 + x = x

<=> 2x = 5 <=> x = 5/2 (ktm)

Xét x \(\ge\)2 ==> pt (*) trở thành: 2x - 3 - x + 2 = x

<=> 0x = -5 (vô lí)

Vậy x = 1/2

k) 2|x - 3| - |4x - 1| = 0

<=> 2|x - 3| = |4x - 1|

<=> \(\orbr{\begin{cases}2\left(x-3\right)=4x-1\\2\left(x-3\right)=1-4x\end{cases}}\)

<=> \(\orbr{\begin{cases}2x-6=4x-1\\2x-6=1-4x\end{cases}}\)

<=> \(\orbr{\begin{cases}2x=-5\\6x=7\end{cases}}\)

<=> \(\orbr{\begin{cases}x=-\frac{5}{2}\\x=\frac{7}{6}\end{cases}}\) Vậy ...

30 tháng 9 2019

Ta cố bdt \(|a|+|b|\ge|a+b|\), dễ dàng chứng mình bằng bình phương 2 vế. Dấu = sảy ra <=>IaI.IbI=a.b <=> a.b>=0

áp dụng vào từng câu

a)A=Ix+1I+Ix+2I+Ix+3I+I-x-4I+I-x-5I  ( vì Ix+4I=I-x=4I, Ix+5I=I-x-5I

A>=I(x+1)+(-x-5)I+I(x+2)+(-x-4)I +Ix+3I=4+2+Ix+3I=6+Ix+3I>=6

Dấu bằng khi (x+1)(-x-5)>=0;(x+2)(-x-4)>=0;Ix+3I=0 =>x=-3

b) LÀm tương tự MinB=18

Dấu = khi (2x+1)(-2x-11)>=0;(2x+3)(-2x-9)>=0;(2x+5)(-2x-7)>=0 <=>-7/2<=x<=-5/2

29 tháng 7 2018

a, Lập bảng xét dấu giá trị tuyệt đối:

x                                                         -5                                      3

\(x+5\)    \(-5-x\)                  0            \(x+5\)             II              \(x+5\)

\(3-x\)    \(3-x\)                      II            \(3-x\)             0               \(x-3\)

VT                                                     II                                       II

TH1: \(x< -5\Rightarrow\hept{\begin{cases}|x+5|=-5-x\\|3-x|=3-x\end{cases}}\)

\(\Rightarrow-5-x+3-x=9\Leftrightarrow-2-2x=9\)\(\Leftrightarrow x=-\frac{11}{2}\left(TM\right)\)

TH2: \(-5\le x\le3\Rightarrow\hept{\begin{cases}|x+5|=x+5\\|3-x|=3-x\end{cases}}\)

\(\Rightarrow x+5+3-x=9\Leftrightarrow8=9\)(vô lí)

TH3: \(x>3\)\(\Rightarrow\hept{\begin{cases}|x+5|=x+5\\|3-x|=x-3\end{cases}}\)

\(\Rightarrow x+5+x-3=9\Leftrightarrow2x-2=9\Leftrightarrow x=\frac{11}{2}\left(TM\right)\)

Vậy \(\orbr{\begin{cases}x=-\frac{11}{2}\\x=\frac{11}{2}\end{cases}}\)

3 câu sau trình bày tương tự, không hiểu thì cứ nhắn mình

29 tháng 7 2018

Mà bạn ơi cho mình hỏi câu b được ko? Tại câu đấy hơi khác á @Trần Bảo như

8 tháng 4 2017

a) Đặt A(x) = 0

Ta có:

3(x + 2) - 2x(x + 2) = 0

=> (x + 2)(3 - 2x) = 0

\(\Rightarrow\left[{}\begin{matrix}x+2=0\\3-2x=0\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=-2\\2x=3\Rightarrow x=\dfrac{3}{2}\end{matrix}\right.\)

Vậy nghiệm của đa thức A(x) là x = -2 hoặc \(x=\dfrac{3}{2}\)

b) Đặt B(x) = 0

Ta có:

2x + 8 - 23 = 0

=> 2x + 8 = 23

=> 2x = 15

\(\Rightarrow x=\dfrac{15}{2}\)

Vậy nghiệm của đa thức B(x) là \(x=\dfrac{15}{2}\)

c) Đặt C(x) = 0

Ta có:

-x5 + 5 = 0

=> -x5 = -5

=> x5 = 5

\(\Rightarrow x=\sqrt[5]{5}\)

Vậy nghiệm của đa thức C(x) là \(x=\sqrt[5]{5}\)

d) Đặt D(x) = 0

Ta có:

2x3 - 18x = 0

=> x(2x2 - 18) = 0

\(\Rightarrow\left[{}\begin{matrix}x=0\\2x^2-18=0\Rightarrow2x^2=18\Rightarrow x^2=9\Rightarrow x=\pm3\end{matrix}\right.\)

Vậy nghiệm của đa thức D(x) là x = 0 hoặc \(x=\pm3\)

e) Đặt E(x) = 0

Ta có:

\(-\dfrac{2}{3}x+\dfrac{5}{9}=0\)

\(\Rightarrow-\dfrac{2}{3}x=-\dfrac{5}{9}\)

\(\Rightarrow x=\dfrac{5}{6}\)

Vậy nghiệm của đa thức E(x) là \(x=\dfrac{5}{6}\)

g) Đặt G(x) = 0

Ta có:

\(\dfrac{4}{25}-x^2=0\)

\(\Rightarrow x^2=\dfrac{4}{25}\)

\(\Rightarrow x=\pm\left(\dfrac{2}{5}\right)\)

Vậy nghiệm của đa thức G(x) là \(x=\pm\left(\dfrac{2}{5}\right)\)

h) Đặt H(x) = 0

Ta có:

x2 - 2x + 1 = 0

=> x2 - 2x = -1

=> x(x - 2) = -1

=> Ta có trường hợp:

+/ x = -1

Và x - 2 = 1 => x = 3

\(-1\ne3\) => Không tồn tại trường hợp x = -1 và x - 2 = 1

+/ x = 1

Và x - 2 = -1 => x = 1

Vậy nghiệm của đa thức H(x) là x = 1

k) Đặt K(x) = 0

Ta có:

5x . (-2x2) . 4x . (-6x) = 0

=> 240x5 = 0

=> x5 = 0

=> x = 0

Vậy nghiệm của đa thức K(x) là x = 0

8 tháng 4 2017

Cần đáp án hay cả cách làm bạn ơi

a) \(\) Ta có : \(F\left(x\right)=5x^3-7x^2+x+7\)

\(\Rightarrow F\left(-1\right)=5.\left(-1\right)^3-7.\left(-1\right)^2+\left(-1\right)+7\)

\(=\left(-5\right)-7-1+7\)

\(=-6\)

Vậy : \(F\left(-1\right)=-6\)

b) Ta có : \(K\left(x\right)=F\left(x\right)-G\left(x\right)+H\left(x\right)\)

\(\Leftrightarrow K\left(x\right)=5x^3-7x^2+x+7-\left(7x^3-7x^2+2x+5\right)+\left(2x^3+4x+1\right)\)

\(\Leftrightarrow K\left(x\right)=\left(5x^3-7x^3+2x^3\right)+\left(-7x^2+7x^2\right)+\left(x-2x+4x\right)+\left(7-5+1\right)\)

\(\Leftrightarrow K\left(x\right)=3x+3\)

Vậy : \(K\left(x\right)=3x+3\)

c) Ta có : \(K\left(x\right)=3x+3\)

\(\Rightarrow\) Bậc của \(K\left(x\right)\) là 1.

Xét \(K\left(x\right)=0\Leftrightarrow3x+3=0\)

\(\Leftrightarrow3.\left(x+1\right)=0\)

\(\Leftrightarrow x+1=0\)

\(\Leftrightarrow x=-1\)

Vậy : nghiệm của đa thức \(K\left(x\right)\)\(x=-1\)

7 tháng 8 2019

a) \(F\left(x\right)=5x^3-7x^2+x+7\)

=> \(F\left(-1\right)=5.\left(-1\right)^3-7.\left(-1\right)^2+\left(-1\right)+7\)

\(F\left(-1\right)=\left(-5\right)-7+\left(-1\right)+7\)

\(F\left(-1\right)=\left(-13\right)+7\)

\(F\left(-1\right)=-6.\)

Vậy \(F\left(-1\right)=-6.\)

\(G\left(x\right)=7x^3-7x^2+2x+5\)

=> \(G\left(-\frac{1}{2}\right)=7.\left(-\frac{1}{2}\right)^3-7.\left(-\frac{1}{2}\right)^2+2.\left(-\frac{1}{2}\right)+5\)

\(G\left(-\frac{1}{2}\right)=\left(-\frac{7}{8}\right)-\frac{7}{4}+\left(-1\right)+5\)

\(G\left(-\frac{1}{2}\right)=\left(-\frac{29}{8}\right)+5\)

\(G\left(-\frac{1}{2}\right)=\frac{11}{8}.\)

Vậy \(G\left(-\frac{1}{2}\right)=\frac{11}{8}.\)

\(H\left(x\right)=2x^3+4x+1\)

=> \(H\left(0\right)=2.0^3+4.0+1\)

\(H\left(0\right)=0+0+1\)

\(H\left(0\right)=1.\)

Vậy \(H\left(0\right)=1.\)

Chúc bạn học tốt!