\(a^2+2bc>b^2+c^2\)

Biến đ...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 11 2017

ai trả lời nhiều tớ sẽ dùng 4 nick k cho nha cảm ơn

20 tháng 5 2017

Theo BĐT trong tam giác, ta có:

a>b-c

<=>a2>(b-c)2

<=>a2>b2-2bc+c2

<=>a2+2bc>b2+c2

=>đpcm

20 tháng 5 2017

a>|b-c| chuẩn hơn

10 tháng 6 2019

#)Giải :

\(a^2+b^2\le1+ab\)

\(\Leftrightarrow a^2-ab+b^2\le1\)

\(\Leftrightarrow\left(a+b\right)\left(a^2-ab+b^2\right)\le a+b\)

\(\Leftrightarrow a^3+b^3\le a+b\)

\(\Leftrightarrow\left(a^3+b^3\right)\left(a^3+b^3\right)\le\left(a+b\right)\left(a^5+b^5\right)\left(a^3+b^3=a^5+b^5\right)\)

\(\Leftrightarrow a^6+2a^3b^3+b^6\le a^6+ab^5+a^5b+b^6\)

\(\Leftrightarrow a^5b+ab^5\ge2a^3b^3\)

\(\Leftrightarrow a^5b+ab^5-2a^3b^3\ge0\)

\(\Leftrightarrow ab\left(a^4-2a^2b^2+b^4\right)\ge0\)

\(\Leftrightarrow ab\left(a^2-b^2\right)^2\ge0\)( luôn đúng \(\forall a;b>0\))

Vậy \(a^2+b^2\le1+ab\left(đpcm\right)\)

P/s : Bài này mk tham khảo trên mạng ( tại thấy rảnh nên chép hộ ^^ )

27 tháng 9 2017

 a; b; c là độ dài 3 cạnh một tam giác nên \(a>b-c\) (bđt tam giác)

\(\Leftrightarrow a^2>\left(b-c\right)^2\)

\(\Leftrightarrow a^2-\left(b-c\right)^2>0\)

\(\Leftrightarrow a^2-\left(b^2-2bc+c^2\right)>0\)

\(\Leftrightarrow a^2-b^2-c^2+2bc>0\)(đpcm)

27 tháng 9 2017

Tui đang lười

Làm theo cái này

Câu hỏi của Đoàn Thanh Kim Kim - Toán lớp 7 - Học toán với OnlineMath

Vào câu hỏi tương tự cũng được. Ohe?

3 tháng 12 2015

sorry, em mới học lớp 6 thui

10 tháng 7 2018

p là nửa chu vi =>a+b+c=2p

a, \(a^2-b^2-c^2+2bc=a^2-\left(b^2-2bc+c^2\right)=a^2-\left(b-c\right)^2=\left(a-b+c\right)\left(a+b-c\right)\)

\(=\left(a+b+c-2b\right)\left(a+b+c-2c\right)=\left(2p-2b\right)\left(2p-2c\right)=4\left(p-b\right)\left(p-c\right)\) (đpcm)

b, \(p^2+\left(p-a\right)^2+\left(p-b\right)^2+\left(p-c\right)^2=p^2+p^2-2pa+a^2+p^2-2pb+b^2+p^2-2pc+c^2\)

\(=4p^2-2p\left(a+b+c\right)+a^2+b^2+c^2=4p^2-2p.2p+a^2+b^2+c^2=a^2+b^2+c^2\) (đpcm)