Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
\(P=\left(x^2+y^2\right)^2-2x^2y^2-4xy+3=\left[\left(x+y\right)^2-2xy\right]^2-2x^2y^2-4xy+3\)
\(=\left(16-2xy\right)^2-2x^2y^2-4xy+3=2x^2y^2-68xy+259\)
\(4=x+y\ge2\sqrt[]{xy}\Rightarrow0\le xy\le4\)
Đặt \(xy=a\Rightarrow0\le a\le4\)
\(P=2a^2-68a+259=259-2a\left(34-a\right)\le259\)
\(P_{max}=259\) khi \(a=0\) hay \(\left(x;y\right)=\left(4;0\right);\left(0;4\right)\)
\(P=\left(2a^2-68a+240\right)+19=2\left(4-a\right)\left(30-a\right)+19\ge19\)
\(P_{min}=19\) khi \(a=4\) hay \(x=y=2\)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(30kg\Leftrightarrow x=30\Leftrightarrow y=4.30+20=140\left(USD\right)\backslash\$\)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(a,x=35\Leftrightarrow y=\dfrac{4}{5}\cdot35+20=48\left(USD\right)\\ b,791690VND=34USD\\ \Leftrightarrow y=34=\dfrac{4}{5}x+20\\ \Leftrightarrow\dfrac{4}{5}x=14\Leftrightarrow x=14\cdot\dfrac{5}{4}=17,5\left(kg\right)\)
![](https://rs.olm.vn/images/avt/0.png?1311)
sửa đề là GTNN ms làm đc nhé
gọi d = ƯCLN ( x,y ) thì x = ad ;y = bd ( a,b ) = 1
Ta có : \(A=\frac{\left(ad+bd\right)^4}{\left(ad\right)^3}=\frac{d^4\left(a^4+b^4\right)}{a^3d^3}=\frac{d\left(a^4+b^4\right)}{a^3}\)
vì ( a,b ) = 1 nên ( a,a+b ) = 1
\(\Rightarrow\left(a^3,\left(a+b\right)^4\right)=1\), suy ra d \(⋮\)a3
giả sử d = ca3 ( c \(\in Z^+\))
Khi đó : A = c ( a + b )4 với a,b,c \(\in Z^+\)
Do A là số lẻ nên c và a+b là số lẻ.
Để Amin ta chọn c = 1, a + b = 3 . Khi đó A = 81
Để a + b = 3 thì a = 2 ; b = 1 hoặc a = 1 ; b = 2
Vậy GTNN của A là 81 khi x = 16,y = 8 hoặc x = 1, y = 2