K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
28 tháng 8 2021

\(P=\left(x^2+y^2\right)^2-2x^2y^2-4xy+3=\left[\left(x+y\right)^2-2xy\right]^2-2x^2y^2-4xy+3\)

\(=\left(16-2xy\right)^2-2x^2y^2-4xy+3=2x^2y^2-68xy+259\)

\(4=x+y\ge2\sqrt[]{xy}\Rightarrow0\le xy\le4\)

Đặt \(xy=a\Rightarrow0\le a\le4\)

\(P=2a^2-68a+259=259-2a\left(34-a\right)\le259\)

\(P_{max}=259\) khi \(a=0\) hay \(\left(x;y\right)=\left(4;0\right);\left(0;4\right)\)

\(P=\left(2a^2-68a+240\right)+19=2\left(4-a\right)\left(30-a\right)+19\ge19\)

\(P_{min}=19\) khi \(a=4\) hay \(x=y=2\)

15 tháng 12 2021

\(30kg\Leftrightarrow x=30\Leftrightarrow y=4.30+20=140\left(USD\right)\backslash\$\)

11 tháng 11 2021

\(a,x=35\Leftrightarrow y=\dfrac{4}{5}\cdot35+20=48\left(USD\right)\\ b,791690VND=34USD\\ \Leftrightarrow y=34=\dfrac{4}{5}x+20\\ \Leftrightarrow\dfrac{4}{5}x=14\Leftrightarrow x=14\cdot\dfrac{5}{4}=17,5\left(kg\right)\)

Cho mình hỏi xem cách làm này của mình có đúng không nhé.Đề bài: Tìm nghiệm nguyên dương của phương trình (x+y)4 = 40y+1 Bài giải:Đặt x+y=n với n>0 và n là số nguyên. Phương trình đã cho tương đương với: n4=40y+1.Vì x+y>y nên n>y.- Nếu n=1 thì y=0 (thỏa mãn n>y) =>(x+y)4=1 mà y=0 => x=1 (vì x>0)- Nếu n=2 thì 40y=15 => y=2,(6) là số hữu tỉ (loại)- Nếu n=3 thì y=2 (thỏa mãn n>y) => (x+y)4=81 => x=1 (vì...
Đọc tiếp

Cho mình hỏi xem cách làm này của mình có đúng không nhé.

Đề bài: Tìm nghiệm nguyên dương của phương trình (x+y)= 40y+1 

Bài giải:

Đặt x+y=n với n>0 và n là số nguyên. Phương trình đã cho tương đương với: n4=40y+1.Vì x+y>y nên n>y.

- Nếu n=1 thì y=0 (thỏa mãn n>y) =>(x+y)4=1 mà y=0 => x=1 (vì x>0)

- Nếu n=2 thì 40y=15 => y=2,(6) là số hữu tỉ (loại)

- Nếu n=3 thì y=2 (thỏa mãn n>y) => (x+y)4=81 => x=1 (vì x>0)

- Nếu n=4 thì 40y=255 => y=6,375 là số hữu tỉ và n<y (loại)

- Nếu n=5 thì 40y=624 => y=15,6 là số hữu tỉ và n<y (loại)

- Nếu n=6 thì 40y=1295 => y=32,375 là số hữu tỉ và n<y (loại)

- Nếu n=7 thì y=60 (loại vì n<y).

Vì n,y là 2 số nguyên dương nên từ phần trên suy ra n>7 thì không có giá trị nào của y thỏa mãn.

Vậy phương trình có 2 cặp nghiệm nguyên (x;y) là: (1;0) ; (1;2).

0
30 tháng 4 2020

sửa đề là GTNN ms làm đc nhé

gọi d = ƯCLN ( x,y ) thì x = ad ;y = bd ( a,b ) = 1

Ta có : \(A=\frac{\left(ad+bd\right)^4}{\left(ad\right)^3}=\frac{d^4\left(a^4+b^4\right)}{a^3d^3}=\frac{d\left(a^4+b^4\right)}{a^3}\)

vì ( a,b ) = 1 nên ( a,a+b ) = 1

\(\Rightarrow\left(a^3,\left(a+b\right)^4\right)=1\), suy ra d \(⋮\)a3

giả sử d = ca3 ( c \(\in Z^+\))

Khi đó : A = c ( a + b )4 với a,b,c \(\in Z^+\)

Do A là số lẻ nên c và a+b là số lẻ.

Để Amin  ta chọn c = 1, a + b = 3 . Khi đó A = 81

Để a + b = 3 thì a = 2 ; b = 1 hoặc a = 1 ; b = 2

Vậy GTNN của A là 81 khi x = 16,y = 8 hoặc x = 1, y = 2