Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : $[2,3]=2$
$[\dfrac{1}{2}]=0$
$[-4]=-4$
$[-5,16]=-6$
- Ta thấy \([2,3]\) là số nguyên lớn nhất mà không vượt quá 2,3 là số 2.
Vậy \([2,3]\) = 2
- Số nguyên lớn nhất không vượt quá \(\dfrac{1}{2}\) là 0.
Vậy \(\left[\dfrac{1}{2}\right]\) = 0
- Số nguyên lớn nhất không vượt quá -4 là -4
Vậy \(\left[-4\right]\) = -4
- Số nguyên lớn nhất không vượt quá -5,16 là -6
Vậy \(\left[-5,16\right]\) = -6
[-12/5] = -3
[5/6] = 0
[-9/4] = -3
< = > Tổng là: -3 + 0 - 3 = -6
Kí hiệu sai, phải là [a]
+) Vì \(\left(\frac{1}{2}\right)^2>0;\left(\frac{1}{3}\right)^2>0;\left(\frac{1}{4}\right)^2>0;...;\left(\frac{1}{2014}\right)^2>0\)
\(\Rightarrow\left(\frac{1}{2}\right)^2+\left(\frac{1}{3}\right)^2+...+\left(\frac{1}{2014}\right)^2>0\)
\(\Rightarrow a>0^{\left(1\right)}\)
+) Ta có: \(\left(\frac{1}{2}\right)^2<\frac{1}{1.2};\left(\frac{1}{3}\right)^2<\frac{1}{2.3};...;\left(\frac{1}{2014}\right)^2<\frac{1}{2013.2014}\)
\(\Rightarrow\left(\frac{1}{2}\right)^2+\left(\frac{1}{3}\right)^2+...+\left(\frac{1}{2014}\right)^2<\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{2013.2014}\)
\(\Rightarrow a<1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2013}-\frac{1}{2014}\)
\(\Rightarrow a<1-\frac{1}{2014}<1^{\left(2\right)}\)
Từ \(^{\left(1\right)}\) và \(^{\left(2\right)}\) => 0 < a < 1
=> [a] = 0
x=0