Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
tuổi con HN là :
50 : ( 1 + 4 ) = 10 ( tuổi )
tuổi bố HN là :
50 - 10 = 40 ( tuổi )
hiệu của hai bố con ko thay đổi nên hiệu vẫn là 30 tuổi
ta có sơ đồ : bố : |----|----|----|
con : |----| hiệu 30 tuổi
tuổi con khi đó là :
30 : ( 3 - 1 ) = 15 ( tuổi )
số năm mà bố gấp 3 tuổi con là :
15 - 10 = 5 ( năm )
ĐS : 5 năm
mình nha
a) Ta có:
5√15+12√20+√5515+1220+5
=√52.15+√(12)2.20+√5=√25.15+√14.20+√5=√255+√204+√5=√5+√5+√5=(1+1+1)√5=3√5=52.15+(12)2.20+5=25.15+14.20+5=255+204+5=5+5+5=(1+1+1)5=35
b) Ta có:
√12+√4,5+√12,512+4,5+12,5
=√12+√92+√252=√12+√9.12+√25.12=√12+√32.12+√52.12=√12+3√12+5√12=(1+3+5).√12=9√12=91√2=9.√22=9√22=12+92+252=12+9.12+25.12=12+32.12+52.12=12+312+512=(1+3+5).12=912=912=9.22=922
c) Ta có:
√20−√45+3√18+√72=√4.5−√9.5+3√9.2+√36.2=√22.5−√32.5+3√32.2+√62.2=2√5−3√5+3.3√2+6√2=2√5−3√5+9√2+6√2=(2√5−3√5)+(9√2+6√2)=(2−3)√5+(9+6)√2=−√5+15√2=15√2−√520−45+318+72=4.5−9.5+39.2+36.2=22.5−32.5+332.2+62.2=25−35+3.32+62=25−35+92+62=(25−35)+(92+62)=(2−3)5+(9+6)2=−5+152=152−5
d) Ta có:
0,1√200+2√0,08+0,4.√50=0,1√100.2+2√0,04.2+0,4√25.2=0,1√102.2+2√0,22.2+0,4√52.2=0,1.10√2+2.0,2√2+0,4.5√2=1√2+0,4√2+2√2=(1+0,4+2)√2=3,4√2
Câu 1
a: \(=\dfrac{\sqrt{2}}{4}\)
b: \(=\sqrt{\dfrac{6}{100}}=\dfrac{\sqrt{6}}{10}\)
d: \(=\dfrac{7}{3\sqrt{3}}=\dfrac{7\sqrt{3}}{9}\)
Câu 2:
a: \(=\sqrt{\dfrac{1}{\sqrt{3}}}=\sqrt{\dfrac{\sqrt{3}}{3}}\)
b: \(=\sqrt{\dfrac{3\sqrt{3}+9}{6}}\)
c: \(=\dfrac{\sqrt{4}\left(\sqrt{5}-\sqrt{3}\right)}{\sqrt{5}-\sqrt{3}}=2\)
d: \(=\dfrac{5\sqrt{2}}{6}\)
EM thử thôi, ko chắc đâu ạ:( Sai thì xin thông cảm cho ạ.
1) \(\sqrt{\frac{2}{3-\sqrt{5}}}=\sqrt{\frac{2\left(3+\sqrt{5}\right)}{\left(3-\sqrt{5}\right)\left(3+\sqrt{5}\right)}}=\sqrt{\frac{6+2\sqrt{5}}{4}}=\frac{\sqrt{6+2\sqrt{5}}}{2}\)
2) \(\sqrt{\frac{a-4}{2\left(\sqrt{a}-2\right)}}=\sqrt{\frac{\left(a-4\right)\left(\sqrt{a}+2\right)}{2\left(\sqrt{a}-2\right)\left(\sqrt{a}+2\right)}}\)
\(=\sqrt{\frac{\left(a-4\right)\left(\sqrt{a}+2\right)}{2\left(a-4\right)}}\)
3) \(\sqrt{\frac{1}{a\left(1-\sqrt{3}\right)}}=\sqrt{\frac{1+\sqrt{3}}{a\left(1-\sqrt{3}\right)\left(1+\sqrt{3}\right)}}=\sqrt{\frac{1+\sqrt{3}}{a\left(1-3\right)}}=\sqrt{-\frac{1+\sqrt{3}}{2a}}\)
4) \(\sqrt{\frac{a}{4-2\sqrt{3}}}=\sqrt{\frac{a\left(4+2\sqrt{3}\right)}{\left(4-2\sqrt{3}\right)\left(4+2\sqrt{3}\right)}}=\sqrt{\frac{4a+2a\sqrt{3}}{16-12}}=\sqrt{\frac{4a+2a\sqrt{3}}{4}}=\frac{\sqrt{4a+2a\sqrt{3}}}{2}\)
1/\(\sqrt{\frac{4}{5}}\)+\(\sqrt{\frac{1}{2}}\)
=\(\sqrt{\frac{4.5}{5.5}}\)+\(\sqrt{\frac{1.2}{2.2}}\)
= \(5.2.\sqrt{5}\)+\(2\sqrt{2}\)
=\(10\sqrt{5}+2\sqrt{2}\)
2.
\(\sqrt{\frac{1}{12}}\)+\(\sqrt{\frac{1}{3}}\)
=\(\sqrt{\frac{1.12}{12.12}}\)+\(\sqrt{\frac{1.3}{3.3}}\)
=\(12.2\sqrt{3}\)+\(3\sqrt{3}\)
=\(\sqrt{3}\left(24+3\right)\)
=\(27\sqrt{3}\)
a, \(\sqrt{\frac{1}{60}}=\frac{\sqrt{1}}{\sqrt{60}}=\frac{\sqrt{1}.\sqrt{60}}{\sqrt{60}.\sqrt{60}}=\frac{\sqrt{60}}{60}=\frac{2.\sqrt{15}}{2.30}=\frac{\sqrt{15}}{30}\)
c, \(\frac{1}{2-\sqrt{3}}=\frac{2+\sqrt{3}}{\left(2-\sqrt{3}\right)\left(2+\sqrt{3}\right)}=\frac{2+\sqrt{3}}{4-3}=2+\sqrt{3}\)
d, \(\frac{\sqrt{7}-\sqrt{3}}{\sqrt{7}+\sqrt{3}}=\frac{\left(\sqrt{7}-\sqrt{3}\right)^2}{\left(\sqrt{7}+\sqrt{3}\right)\left(\sqrt{7}-\sqrt{3}\right)}=\frac{7-2\sqrt{21}+3}{7-3}=\frac{10-2\sqrt{21}}{4}\)
\(\sqrt{\frac{1}{600}}=\sqrt{\frac{6}{3600}}=\frac{\sqrt{6}}{\sqrt{3600}}=\frac{\sqrt{6}}{60}\)
\(\sqrt{\frac{11}{540}}=\sqrt{\frac{11}{36.15}}=\frac{1}{6}\sqrt{\frac{165}{15^2}}=\frac{1}{6}.\frac{\sqrt{165}}{15}=\frac{\sqrt{165}}{90}\)
\(\sqrt{\frac{3}{50}}=\sqrt{\frac{3}{25.2}}=\frac{1}{5}\sqrt{\frac{3}{2}}=\frac{1}{5}\sqrt{\frac{6}{4}}=\frac{1}{5}.\frac{\sqrt{6}}{2}=\frac{\sqrt{6}}{10}\)
\(\sqrt{\frac{5}{98}}=\sqrt{\frac{5}{49.2}}=\frac{1}{7}\sqrt{\frac{5}{2}}=\frac{1}{7}.\sqrt{\frac{10}{4}}=\frac{\sqrt{10}}{14}\)
\(\sqrt{\frac{\left(1-\sqrt{3}\right)^2}{27}}=\frac{\left|1-\sqrt{3}\right|}{\sqrt{9.3}}=\frac{\sqrt{3}-1}{3\sqrt{3}}=\frac{\sqrt{3}\left(\sqrt{3}-1\right)}{9}\)