Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
\(\sqrt{\frac{(1+\sqrt{2})^3}{27}}=\sqrt{\frac{(1+\sqrt{2})^3}{3^3}}=\sqrt{\frac{3(1+\sqrt{2})^3}{3^4}}\)
\(=\frac{(1+\sqrt{2})\sqrt{3+3\sqrt{2}}}{9}\)
\(ab\sqrt{\frac{1}{a}+\frac{1}{b}}=\sqrt{(ab)^2(\frac{1}{a}+\frac{1}{b})}=\sqrt{ab^2+a^2b}\)
bài 1) a) \(xy\sqrt{\dfrac{x}{y}}=x\sqrt{y}\sqrt{y}\dfrac{\sqrt{x}}{\sqrt{y}}=x\sqrt{x}\sqrt{y}=\left(\sqrt{x}\right)^3\sqrt{y}\)
b) \(\sqrt{\dfrac{5a^3}{49b}}=\dfrac{\sqrt{5a^3}}{\sqrt{49b}}=\dfrac{\sqrt{5a^3}}{7\sqrt{b}}=\dfrac{\sqrt{5a^3}.\sqrt{b}}{7\sqrt{b}.\sqrt{b}}=\dfrac{\sqrt{5a^3b}}{7b}\)
bài 2) a) \(\dfrac{\sqrt{3}-3}{1-\sqrt{3}}=\dfrac{\sqrt{3}\left(1-\sqrt{3}\right)}{1-\sqrt{3}}=\sqrt{3}\)
b) \(\dfrac{5-\sqrt{15}}{\sqrt{3}-\sqrt{5}}=\dfrac{-\sqrt{5}\left(\sqrt{3}-\sqrt{5}\right)}{\sqrt{3}-\sqrt{5}}=-\sqrt{5}\)
c) \(\dfrac{2\sqrt{2}+2}{5\sqrt{2}}=\dfrac{\sqrt{2}\left(2+\sqrt{2}\right)}{5\sqrt{2}}=\dfrac{2+\sqrt{2}}{5}\)
EM thử thôi, ko chắc đâu ạ:( Sai thì xin thông cảm cho ạ.
1) \(\sqrt{\frac{2}{3-\sqrt{5}}}=\sqrt{\frac{2\left(3+\sqrt{5}\right)}{\left(3-\sqrt{5}\right)\left(3+\sqrt{5}\right)}}=\sqrt{\frac{6+2\sqrt{5}}{4}}=\frac{\sqrt{6+2\sqrt{5}}}{2}\)
2) \(\sqrt{\frac{a-4}{2\left(\sqrt{a}-2\right)}}=\sqrt{\frac{\left(a-4\right)\left(\sqrt{a}+2\right)}{2\left(\sqrt{a}-2\right)\left(\sqrt{a}+2\right)}}\)
\(=\sqrt{\frac{\left(a-4\right)\left(\sqrt{a}+2\right)}{2\left(a-4\right)}}\)
3) \(\sqrt{\frac{1}{a\left(1-\sqrt{3}\right)}}=\sqrt{\frac{1+\sqrt{3}}{a\left(1-\sqrt{3}\right)\left(1+\sqrt{3}\right)}}=\sqrt{\frac{1+\sqrt{3}}{a\left(1-3\right)}}=\sqrt{-\frac{1+\sqrt{3}}{2a}}\)
4) \(\sqrt{\frac{a}{4-2\sqrt{3}}}=\sqrt{\frac{a\left(4+2\sqrt{3}\right)}{\left(4-2\sqrt{3}\right)\left(4+2\sqrt{3}\right)}}=\sqrt{\frac{4a+2a\sqrt{3}}{16-12}}=\sqrt{\frac{4a+2a\sqrt{3}}{4}}=\frac{\sqrt{4a+2a\sqrt{3}}}{2}\)
\(\sqrt{\frac{3}{2a^3}}=\frac{\sqrt{3.2a^3}}{2a^3}=\frac{\sqrt{6a^3}}{2a^3}\)
Bài 2:
a: \(=\sqrt{\left(\dfrac{1}{5a}\right)^2}=\dfrac{1}{\left|5a\right|}=\dfrac{-1}{5a}\)
b: \(=\dfrac{1}{3}\cdot15\cdot\left|a\right|=5\left|a\right|\)