K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
DM
0
Các câu hỏi dưới đây có thể giống với câu hỏi trên
3 tháng 4 2017
đặt \(A=2004^{2003}+2004^{2002}+...+2004^2+2004+1\)
\(2004A=\left(2004^{2004}+2004^{2003}+2004^{2002}+...+2004^3+2004^2+2004\right)\)
\(2004A-A=2004^{2004}-1\)
\(A=\frac{2004^{2004}-1}{4}\)
mình chỉ biết đến đây thôi
PV
2 tháng 3 2016
Có:
- 2003A=20032004+2003/20032004+1 = 20032004+1+2002/20032004+1= 1+ 2002/20032004+1
- 2003A= 20032003+2003/20032003+1 .........= 1 + 2002/20032003+1
- Vì 1+ 2002/20032004+1<1+ 20022003+1nên 2003A<2003B
- Nên A<B
- !!!!!!!!!!!
NN
1
KN
21 tháng 4 2019
\(B=4+3^2+3^3+...+3^{2004}\)
\(\Rightarrow B=1+3+3^2+3^3+...+3^{2004}\)
\(\Rightarrow3B=3+3^2+3^3+...+3^{2005}\)
\(\Rightarrow3B-B=3+3^2+3^3+...+3^{2005}-1-3-3^2-...-3^{2004}\)
\(\Rightarrow2B=3^{2005}-1\)
\(\Rightarrow B=\frac{3^{2005}-1}{2}< \frac{3^{2005}}{2}< 3^{2005}=C\)
Vậy B < C
TK
0
TK
1