Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{25}{49}>\frac{25}{50}=\frac{1}{2}=\frac{35}{70}>\frac{35}{71}\)
Do đó \(\frac{25}{49}>\frac{35}{71}\).
\(\frac{1997}{2003}=\frac{2003-6}{2003}=1-\frac{6}{2003}\)
\(\frac{1995}{2001}=\frac{2001-6}{2001}=1-\frac{6}{2001}\)
Có \(\frac{6}{2003}< \frac{6}{2001}\)do đó \(\frac{1997}{2003}>\frac{1995}{2001}\).
\(\frac{2020}{2018}=\frac{2018+2}{2018}=1+\frac{2}{2018}< 1+\frac{2}{2016}=\frac{2018}{2016}\)
Bài 1:
Ta có:
\(N=\frac{2017+2018}{2018+2019}=\frac{2017}{2018+2019}+\frac{2018}{2018+2019}\)
Do \(\hept{\begin{cases}\frac{2017}{2018+2019}< \frac{2017}{2018}\\\frac{2018}{2018+2019}< \frac{2018}{2019}\end{cases}\Rightarrow\frac{2017}{2018+2019}+\frac{2018}{2018+2019}< \frac{2017}{2018}+\frac{2018}{2019}}\)
\(\Leftrightarrow N< M\)
Vậy \(M>N.\)
Bài 2:
Ta có:
\(A=\frac{2017}{987653421}+\frac{2018}{24681357}=\frac{2017}{987654321}+\frac{2017}{24681357}+\frac{1}{24681357}\)
\(B=\frac{2018}{987654321}+\frac{2017}{24681357}=\frac{1}{987654321}+\frac{2017}{987654321}+\frac{2017}{24681357}\)
Do \(\hept{\begin{cases}\frac{2017}{987654321}+\frac{2017}{24681357}=\frac{2017}{987654321}+\frac{2017}{24681357}\\\frac{1}{24681357}>\frac{1}{987654321}\end{cases}}\)
\(\Rightarrow\frac{2017}{987654321}+\frac{2017}{24681357}+\frac{1}{24681357}>\frac{1}{987654321}+\frac{2017}{987654321}+\frac{2017}{24681357}\)
\(\Leftrightarrow A>B\)
Vậy \(A>B.\)
Bài 3:
\(\frac{2016}{2017}+\frac{2017}{2018}+\frac{2018}{2019}+\frac{2019}{2016}=1-\frac{1}{2017}+1-\frac{1}{2018}+1-\frac{1}{2019}+1+\frac{3}{2016}\)
\(=1+1+1+1-\frac{1}{2017}-\frac{1}{2018}-\frac{1}{2019}+\frac{3}{2016}\)
\(=4-\left(\frac{1}{2017}+\frac{1}{2018}+\frac{1}{2019}-\frac{3}{2016}\right)\)
Do \(\hept{\begin{cases}\frac{1}{2017}< \frac{1}{2016}\\\frac{1}{2018}< \frac{1}{2016}\\\frac{1}{2019}< \frac{1}{2016}\end{cases}\Rightarrow\frac{1}{2017}+\frac{1}{2018}+\frac{1}{2019}< \frac{1}{2016}+\frac{1}{2016}+\frac{1}{2016}=\frac{3}{2016}}\)
\(\Rightarrow\frac{1}{2017}+\frac{1}{2018}+\frac{1}{2019}-\frac{3}{2016}\)âm
\(\Rightarrow4-\left(\frac{1}{2017}+\frac{1}{2018}+\frac{1}{2019}-\frac{3}{2016}\right)>4\)
Vậy \(\frac{2016}{2017}+\frac{2017}{2018}+\frac{2018}{2019}+\frac{2019}{2016}>4.\)
Bài 4:
\(\frac{1991.1999}{1995.1995}=\frac{1991.\left(1995+4\right)}{\left(1991+4\right).1995}=\frac{1991.1995+1991.4}{1991.1995+4.1995}\)
Do \(\hept{\begin{cases}1991.1995=1991.1995\\1991.4< 1995.4\end{cases}}\Rightarrow1991.1995+1991.4< 1991.1995+1995.4\)
\(\Rightarrow\frac{1991.1995+1991.4}{1991.1995+4.1995}< \frac{1991.1995+1995.4}{1991.1995+4.1995}=1\)
\(\Rightarrow\frac{1991.1999}{1995.1995}< 1\)
Vậy \(\frac{1991.1999}{1995.1995}< 1.\)
a) Ta có: 7=7 ; 12 < 18 => 7/12 > 7/18
b) 35 = 35 ; 145 > 175 => 35/145 > 35/175
c) 78/79 < 1 ; 79/78 > 1 => 78/79 < 79/78
d) 2016 /2015 > 1 ; 2015/2016 < 1 => 2016/2015 > 2015/2016
16/27>1529
1995/1996<1996/1997
327/326<326/325
43/6>39/9
nhớ nhé
nhớ tích đúng cho mình nhé đảm bảo 1000000000000000000000000000000000000000000000000000000000000%là đúng
\(a,\dfrac{199}{200}=1-\dfrac{1}{200};\dfrac{200}{201}=1-\dfrac{1}{201}\\ Vì:\dfrac{1}{200}>\dfrac{1}{201}\\ \Rightarrow1-\dfrac{1}{200}< 1-\dfrac{1}{201}\\ Vậy:\dfrac{199}{200}< \dfrac{200}{201}\\ b,\dfrac{2001}{2002}=1-\dfrac{1}{2002};\dfrac{2002}{2003}=1-\dfrac{1}{2003}\\ Vì:\dfrac{1}{2002}>\dfrac{1}{2003}\Rightarrow1-\dfrac{1}{2002}< 1-\dfrac{1}{2003}\\ Vậy:\dfrac{2001}{2002}< \dfrac{2002}{2003}\)
\(c,\dfrac{2021}{2020}=1+\dfrac{1}{2020};\dfrac{2020}{2019}=1+\dfrac{1}{2019}\\ Vì:\dfrac{1}{2020}< \dfrac{1}{2019}\\ Nên:1+\dfrac{1}{2020}< 1+\dfrac{1}{2019}\\ Vậy:\dfrac{2021}{2020}< \dfrac{2020}{2019}\\ d,\dfrac{199}{198}=1+\dfrac{1}{198};\dfrac{200}{199}=1+\dfrac{1}{199}\\ Vì:\dfrac{1}{198}>\dfrac{1}{199}\\ Nên:1+\dfrac{1}{198}>1+\dfrac{1}{199}\\ Vậy:\dfrac{199}{198}>\dfrac{200}{199}\)