Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(\frac{P\left(x\right)}{Q\left(x\right)}=\frac{x^4+x^3-2x^2+ax+b+x^2}{x^2+x-2}=x^2+\frac{x^2+ax+b}{x^2+x-2}\)
Để P(x)\(⋮\) Q(x)
\(\Rightarrow x^2+ax+b⋮x^2+x-2\)
\(\Rightarrow a=1;b=-2\)
Vậy.......
Cách 1 : Chia \(f(x)\)cho x2 + x + 1
Ta được dư là : \((2-a)x+(b+1-a)=r(x)\)
Ta có phép chia hết khi và chỉ khi \(r(x)=0\), tức là : \(\hept{\begin{cases}2-a=0\\b+1-a=0\end{cases}\Rightarrow}a=2,b=1\)
Cách 2 : Chú ý rằng \(f(x)\)bậc 3 , còn đa thức chia là bậc 2, nên thương phải là một nhị thức bậc nhất, có dạng x + k . Từ đó :
\((x+k)(x^2+x+1)=x^3+ax^2+2x+b\)
\(\Leftrightarrow x^3+ax^2+2x+b=x^3+(k+1)x^2+(k+1)x+k\)
Hệ số của các hạng tử cùng bậc phải bằng nhau , suy ra a = k + 1 ; 2 = k + 1 ; b = k. Từ đây ta có : k = 1 , a = 2 , b = 1
Câu hỏi của Hồ Thu Giang - Toán lớp 8 - Học toán với OnlineMath
Em tham khảo tại đây nhé.
a)\(x^4-6x^2+2x+28\)
\(=\left(x^4-x^3\right)+\left(x^3-x^2\right)-\left(5x^2-5x\right)-\left(3x-3\right)+25\)
\(=\left(x-1\right)\left(x^3+x^2-5x-3\right)+25\)
=> số dư là 25
b) Cách làm tương tự câu a nhé
/ (4x−2)(10x+4)(5x+7)(2x+1)+17=0(4x−2)(10x+4)(5x+7)(2x+1)+17=0
⇔(4x−2)(5x+7)(10x+4)(2x+1)+17=0⇔(4x−2)(5x+7)(10x+4)(2x+1)+17=0
⇔(20x2+18x−14)(20x2+18x+4)+17=0⇔(20x2+18x−14)(20x2+18x+4)+17=0
Đặt t= 20x2+18x+4(t≥0)20x2+18x+4(t≥0) ta có:
(t-18).t +17=0
⇔t2−18t+17=0⇔t2−18t+17=0
⇔(t−17)(t−1)=0⇔(t−17)(t−1)=0
⇔[t=17(tm)t=1(tm)⇔[t=17(tm)t=1(tm) ⇔[20x2+18x+4=1720x2+18x+4=1⇔[20x2+18x−13=020x2+18+3=0⇔[20x2+18x+4=1720x2+18x+4=1⇔[20x2+18x−13=020x2+18+3=0
⇔[(20x+9−341−−−√)(20x+9+341−−−√)=0(20x+9−21−−√)(20x+9+21−−√)=0⇔[(20x+9−341)(20x+9+341)=0(20x+9−21)(20x+9+21)=0
⇔⎡⎣⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢x=−9+341−−−√20x=−9−341−−−√20x=−9+21−−√20x=−9−21−−√20
\(a,\)\(\left(4x-2\right)\left(10x+4\right)\left(5x+7\right)\left(2x+1\right)+17\)
\(=\left(4x-2\right)\left(5x+7\right)\left(10x+4\right)\left(2x+1\right)+17\)
\(=\left(20x^2+18x-5\right)\left(20x^2+18x+4\right)+17\)
Đặt ....
Dạng này có hai cách một là dùng định lý Bezout hai là Horner nha
a) Áp dụng tắc Horner , ta có bảng sau :
a=-1 1 -9 6 16 1 -10 16 0 Vậy , phép chia có là phép chia hết
b) Áp dụng quy tắc Horner , ta có bẳng sau ;
a=3 1 -9 6 16 1 -6 -12 -20 Vậy , phép chia không là phép chia hết
\(\)
\(\)
\(\text{Đặt }f_{\left(x\right)}=x^3-9x^2+6x+16\\ \text{Áp dụng định lí }Bê-du\\ \text{Ta được: }\left\{{}\begin{matrix}f_{\left(-1\right)}=\left(-1\right)^3-9\cdot\left(-1\right)^2+6\cdot\left(-1\right)+16\\f_{\left(3\right)}=3^3-9\cdot3^2+6\cdot3+16\end{matrix}\right.\\ \Rightarrow\left\{{}\begin{matrix}f_{\left(-1\right)}=0\\f_{\left(3\right)}=-20\end{matrix}\right.\\ \Rightarrow\left\{{}\begin{matrix}f_{\left(x\right)}:x+1\text{ }dư\text{ }0\\f_{\left(x\right)}:x-3\text{ }dư\text{ }-20\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}f_{\left(x\right)}⋮x+1\\f_{\left(x\right)}⋮̸x-3\end{matrix}\right.\\ \text{Vậy }x^3-9x^2+6x+16⋮x+1\text{ }\text{ và }⋮̸x-3 \)
\(f\left(x\right)=x^3-9x^2+6x+16\)
\(\Leftrightarrow f\left(x\right)=\left(x^3-10x^2+16x\right)+\left(x^2-10x+16\right)\)
\(\Leftrightarrow f\left(x\right)=x\left(x^2-10x+16\right)+\left(x^2-10x+16\right)\)
\(\Leftrightarrow f\left(x\right)=\left(x+1\right)\left(x^2-10x+16\right)\)
\(\Leftrightarrow f\left(x\right)=\left(x+1\right)\left(x^2-8x-2x+16\right)\)
\(\Leftrightarrow f\left(x\right)=\left(x+1\right)\left[x\left(x-8\right)-2\left(x-8\right)\right]\)
\(\Leftrightarrow f\left(x\right)=\left(x+1\right)\left(x-2\right)\left(x-8\right)\)
Vậy f(x) chia hết cho x + 1 nhưng không chia hết cho x - 3
Bạn có thể dùng sơ đồ Hoóc-ne
a
a=-1 1 -9 6 16 1 -10 16 0
Vậy \(f\left(x\right)⋮x+1\)
b
1 -9 6 16 a=3 1 -6 -12 -20
Vậy \(f\left(x\right)\) không chia hết cho \(x-3\)