K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 12 2017

Đáp án C

Phương trình  x 2   - 6x + 7 = 0 có  △ = - 6 x 2  - 4.1.7 = 8 > 0 nên phương trình có hai nghiệm x 1 ;   x 2

Theo hệ thức Vi-ét ta có:  x 1 +  x 2  = Toán lớp 9 | Lý thuyết - Bài tập Toán 9 có đáp án = 6  ⇔   x 1  +  x 2   = 6

22 tháng 8 2019

1.

a.\(\Delta=\left(4m+1\right)^2-8\left(m-4\right)=16m^2+33>0\left(\forall m\in R\right)\)

b.Gia su 2 nghiem cua PT la \(x_1,x_2\left(x_1>x_2\right)\)

Theo de bai ta co;\(x_1-x_2=17\)

Tu cau a ta co:\(x_1=\frac{-4m-1+\sqrt{16m^2+33}}{2}\) \(x_2=\frac{-4m-1-\sqrt{16m^2+33}}{2}\)

\(\Rightarrow\frac{-4m-1+\sqrt{16m^2+33}}{2}-\frac{-4m-1-\sqrt{16m^2+33}}{2}=17\)

\(\Leftrightarrow\frac{2\sqrt{16m^2+33}}{2}=17\)

\(\Leftrightarrow16m^2+33=289\)

\(\Leftrightarrow m=4\)

22 tháng 8 2019

2.

a.\(\Delta'=\left(m-1\right)^2-\left(m+2\right)\left(3-m\right)=2m^2-3m-5=\left(m+1\right)\left(2m-5\right)>0\)

TH1:\(\hept{\begin{cases}m+1>0\\2m-5>0\end{cases}\Leftrightarrow m>\frac{5}{2}}\)

TH2:\(\hept{\begin{cases}m+1< 0\\2m-5< 0\end{cases}\Leftrightarrow m< -1}\)

Xet TH1:\(x_1=\frac{-m+1+\sqrt{2m^2-3m-5}}{m+2}\) \(x_2=\frac{-m+1-\sqrt{2m^2-3m-5}}{m+2}\)

Ta co:\(x^2_1+x^2_2=x_1+x_2\)

\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1.x_2=x_1+x_2\)

\(\Leftrightarrow\left(\frac{-2m+2}{m+2}\right)^2-\frac{-m^2+5m+6}{\left(m+2\right)^2}=\frac{-2m+2}{m+2}\)

\(\Leftrightarrow\frac{5m^2-13m-2}{\left(m+2\right)^2}=\frac{-2m^2-2m+4}{\left(m+2\right)^2}\)

\(\Rightarrow7m^2-11m-6=0\)

\(\Delta_m=121+168=289>0\)

\(\Rightarrow\hept{\begin{cases}m_1=2\left(l\right)\\m_2=-\frac{3}{7}\left(l\right)\end{cases}}\) 

TH2;Tuong tu 

Vay khong co gia tri nao cua m de PT co 2 nghiem thoa man \(x^2_1+x^2_2=x_1+x_2\)

*Dạng 2: Các bài toán liên quan đến hệ pt, phương trình bậc hai một ẩn và áp dụng hệ thức Vi-et Bài 1 : Cho phương trình :x2 – mx + 2(m – 2 ) = 0 a/ Giải phương trình khi m = 1 b/ Chứng minh rằng phương trình luôn có nghiệm với mọi m c/ Tìm m để phương trình có hai nghiệm 2x1 + 3x 2  = 5  Bài 2: Cho phương trình   .  Giải phương trình khi m =2 Tìm các giá trị của m để phương trình có nghiệm. Gọi...
Đọc tiếp

*Dạng 2: Các bài toán liên quan đến hệ pt, phương trình bậc hai một ẩn và áp dụng hệ thức Vi-et

 

Bài 1 : Cho phương trình :x2 – mx + 2(m – 2 ) = 0

a/ Giải phương trình khi m = 1

b/ Chứng minh rằng phương trình luôn có nghiệm với mọi m

c/ Tìm m để phương trình có hai nghiệm 2x1 + 3x 2  = 5

 

Bài 2: Cho phương trình   .

  Giải phương trình khi m =2

  1. Tìm các giá trị của m để phương trình có nghiệm.

  2. Gọi là hai nghiệm của phương trình. Tìm giá trị của m để:

Bài 3: Cho phương trình:  

a) Chứng tỏ rằng phương trình có nghiệm   với mọi m.

b) Đặt A=.

b1) Chứng minh rằng:  A=    

b2) Tìm m sao cho A= 27.

  c) Tìm m sao cho phương trình có nghiệm này bằng ba  lần nghiệm kia

 

Bài 4:   Cho phương trình bậc hai  x2 – 2(m + 1) x + m – 4 = 0 (1)

a/ Giải phương trình (1) khi m = 1

b/ Chứng minh rằng phương trình (1) luôn có hai nghiệm phân biệt với mọi m

c/ Chứng minh rằng : Biểu thức A = x1 (1 – x2) + x2( 1 – x1 ) không phụ thuộc vào giá trị của m

 

1
29 tháng 4 2018

bài 1 a: 

x2-mx+2(m-2)=0(*)

thay m=1 vào phương trình trên ta được:

2x-1x+2(1-2)=0

<=>2x-1x=-2(1-2)

<=>x=-2+4

<=>x=2

vậy m=1 thì x=2

1 tháng 6 2020

Ta có: \(x^2-5x+3=0\)

Áp dụng định lí viet ta có: \(\hept{\begin{cases}x_1+x_2=5\\x_1x_2=3\end{cases}}\)

a) \(A=x_1^2+x_2^2=\left(x_1+x_2\right)^2-2x_1x_2=5^2-2.3=19\)

b) \(B=x_1^3+x_2^3=\left(x_1+x_2\right)^3-3\left(x_1+x_2\right)x_1x_2=5^3-3.5.3=80\)

c) \(C=\left|x_1-x_2\right|\)>0

=> \(C^2=x_1^2+x_2^2-2x_1x_2=19-2.3=13\)

=> C = căn 13

d) \(D=x_2+\frac{1}{x_1}+x_1+\frac{1}{x_2}=\left(x_1+x_2\right)+\frac{x_1+x_2}{x_1x_2}=5+\frac{5}{3}=5\frac{5}{3}\)

e) \(E=\frac{1}{x_1+3}+\frac{1}{x_2+3}=\frac{\left(x_1+x_2\right)+6}{x_1x_2+3\left(x_1+x_2\right)+9}=\frac{5+6}{3+3.5+9}=\frac{11}{27}\)

g) \(G=\frac{x_1-3}{x_1^2}+\frac{x_2-3}{x_2^2}=\left(\frac{1}{x_1}+\frac{1}{x_2}\right)-3\left(\frac{1}{x_1^2}+\frac{1}{x_2^2}\right)\)

\(=\frac{x_1+x_2}{x_1x_2}-3\frac{x_1^2+x_2^2}{x_1^2.x_2^2}=\frac{5}{3}-3.\frac{19}{3^2}=-\frac{14}{3}\)

24 tháng 4 2020

a) Thay m=1 vào phương trình ta được:

x2+2.1.x-6.1-9=0

<=> x2+2x-6-9=0

<=> x2+2x-15=0

<=> x2+5x-3x-15=0

<=> x(x+5)-3(x+5)=0

<=> (x-3)(x+5)=0

\(\Leftrightarrow\orbr{\begin{cases}x-3=0\\x+5=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=3\\x=-5\end{cases}}}\)

b) Thay x=2 vào phương trình ta được:

22+2.2.m-6m-9=0

<=> 4+4m-6m-9=0

<=> -2x-5=0

<=> -2x=5

<=> \(x=\frac{-5}{2}\)

2 tháng 3 2022

\(\left(-5\right)^2-4.\left(-3\right)\left(-2\right)=25-24=1>0\)

Suy ra pt luôn có 2 nghiệm phân biệt

Theo Vi-ét:\(\left\{{}\begin{matrix}x_1+x_2=\dfrac{-5}{3}\\x_1x_2=\dfrac{2}{3}\end{matrix}\right.\)

\(M=x_1+\dfrac{1}{x_1}+\dfrac{1}{x_2}+x_2\\ =\left(x_1+x_2\right)+\dfrac{x_1+x_2}{x_1x_2}\\ =\dfrac{-5}{3}+\dfrac{-5}{3}:\dfrac{2}{3}\\ =\dfrac{-5}{3}-\dfrac{5}{2}\\ =\dfrac{-25}{6}\)

-3x2-5x-2=0

Ta có :-3-(-5)-2=0

=>Phương trình có 2 nghiệm \(\hept{\begin{cases}x_1=-1\\x_2=\frac{-5}{3}\end{cases}}\)

Thay x1;x2 vào M ta được:

M=(-1)+\(\frac{1}{-1}\)+\(\frac{1}{\frac{-5}{3}}\)+\(\frac{-5}{3}\)

=(-1)+(-1)+\(-\frac{3}{5}+-\frac{5}{3}\)

=\(-\frac{64}{15}\)

9 tháng 5 2019

a) phương trình (1) có a=m-1 b'=b/2 = -m-1 c=m

 \(\Delta=b'^2-ac=\left(-m-1\right)^2-\left(m-1\right)\cdot m\)
\(=m^2+2m+1-m^2+m=3m+1\)
Phương trình có hai nghiệm <=> \(\Delta\ge0\Leftrightarrow3m+1\ge0\Leftrightarrow m\ge-\frac{1}{3}\)

b) Khi phương trình có hai nghiệm x1, x2, theo hệ thức Vi-ét ta có

\(\hept{\begin{cases}x_1+x_2=\frac{2m+2}{m-1}=2+\frac{4}{m-1}\\x_1\cdot x_2=\frac{m}{m-1}=1+\frac{1}{m-1}\end{cases}}\)
\(\Rightarrow x_1+x_2-4x_1\cdot x_2=-2\)

9 tháng 5 2019

Sửa delta thành delta' nha, lúc nãy quên

26 tháng 2 2019

m<9 ạ em nhầm!

27 tháng 2 2019

Mình nghĩ với pt tổng quát: \(ax^2+bx+c=0\) có \(\Delta=b^2-4ac\)

Nếu như vậy thì: \(1.x^2+6x+m\) có \(\Delta=6^2-4m\)chứ?

Riêng mình thì bài này mình dùng delta phẩy cho lẹ:

                                       Lời giải

Để pt \(x^2+6x+m=0\) có 2 nghiệm phân biệt thì:

\(\Delta'=\left(\frac{b}{2}\right)^2-ac=3^2-m>0\)

\(\Leftrightarrow m< 9\)