\(2x^2-3x+1=0\)

hãy tính giá trị

a,

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 3 2018

Ta có: Δ=b2-4ac

Δ=(-3)2-4.2.1

Δ=1>0

⇒Pt luôn có 2 nghiệm

Theo hệ thức vi ét ta có:

x1.x2=1/2=0,5 : x1+x2=3/2=1,5

a,A=\(\dfrac{1}{x_1}+\dfrac{1}{x_{2_{ }}}=\dfrac{x_1+x_2}{x_1.x_2}\) =\(\dfrac{1,5}{0,5}=3\)

b,B=\(\dfrac{1-x_1}{x_1}+\dfrac{1-x_2}{x_2}=\dfrac{1}{x_1}-1+\dfrac{1}{x_2}-1\)

B= 3 - 2 = 1

c,C=x13+x23=(x1+x2)3-3x1x2(x1+x2)

C=1,52 - 3 . 0,5 . 1,5 =0

a: \(\left|x_1-x_2\right|=\sqrt{\left(x_1+x_2\right)^2-4x_1x_2}\)

\(=\sqrt{\left(\dfrac{1}{2}\right)^2-4\cdot\left(-1\right)}=\sqrt{\dfrac{1}{4}+4}\)

\(=\sqrt{\dfrac{17}{4}}\)

=>\(\left[{}\begin{matrix}x_1-x_2=\dfrac{\sqrt{17}}{2}\\x_1-x_2=-\dfrac{\sqrt{17}}{2}\end{matrix}\right.\)

c,d:Vì pt có hai nghiệm trái dấu

nên chắc chắn hai biểu thức này sẽ không tính được vì sẽ có một căn bậc hai mà biểu thức trong căn âm

NV
3 tháng 3 2019

\(\left(2-\sqrt{3}\right)^3+a\left(2-\sqrt{3}\right)^2+b\left(2-\sqrt{3}\right)-1=0\)

\(\Leftrightarrow7a+2b+25-\left(4a+b+15\right)\sqrt{3}=0\)

Do \(a,b\) hữu tỉ và \(\sqrt{3}\) vô tỉ

\(\Rightarrow\left\{{}\begin{matrix}7a+2b+25=0\\4a+b+15=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=-5\\b=5\end{matrix}\right.\)

Khi đó pt có dạng:

\(x^5-5x^2+5x-1=0\Leftrightarrow\left(x-1\right)\left(x^2-4x+1\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x-1=0\\x^2-4x+1=0\left(1\right)\end{matrix}\right.\)

Giả sử \(x_3=1\)\(x_1;x_2\) là nghiệm của \(\left(1\right)\Rightarrow\left\{{}\begin{matrix}x_1+x_2=4\\x_1x_2=1\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x_1^3+x_2^3=\left(x_1+x_2\right)^3-3x_1x_2\left(x_1+x_2\right)=4^3-12=52\\x_1^2+x_2^2=\left(x_1+x_2\right)^2-2x_1x_2=4^2-2=14\end{matrix}\right.\)

\(\Rightarrow S=\dfrac{1}{x^5_1}+\dfrac{1}{x^5_2}+1=A+1\)

\(A=\dfrac{x_1^5+x_2^5}{\left(x_1x_2\right)^5}=x_1^5+x_2^5=\left(x_1^3+x_2^3\right)\left(x_1^2+x^2_2\right)-\left(x_1x_2\right)^2\left(x_1+x_2\right)\)

\(\Rightarrow A=52.14-4=724\)

\(\Rightarrow S=A+1=725\)

AH
Akai Haruma
Giáo viên
25 tháng 5 2018

Bài 1:

Trước tiên để pt có hai nghiệm thì:

\(\Delta'=2^2-(m+1)>0\Leftrightarrow m<3\)

Áp dụng định lý Viete cho pt bậc 2 là: \(\left\{\begin{matrix} x_1+x_2=-4\\ x_1x_2=m+1\end{matrix}\right.\)

Điều kiện: $x_1,x_2\neq 0$ \(\Leftrightarrow x_1x_2=m+1\neq 0\Leftrightarrow m\neq -1\)

Khi đó: \(\frac{x_1}{x_2}+\frac{x_2}{x_1}=\frac{10}{3}\)

\(\Leftrightarrow \frac{x_1^2+x_2^2}{x_1x_2}=\frac{10}{3}\Leftrightarrow \frac{x1^2+x_2^2+2x_1x_2}{x_1x_2}=\frac{16}{3}\)

\(\Leftrightarrow \frac{(x_1+x_2)^2}{x_1x_2}=\frac{16}{3}\Leftrightarrow \frac{(-4)^2}{m+1}=\frac{16}{3}\)

\(\Leftrightarrow m+1=3\Leftrightarrow m=2\) (thỏa mãn)

Vậy $m=2$

 Bài 2 bạn xem lại đề bài.

 

16 tháng 8 2016

Theo định lí Vi-et , ta có : \(\begin{cases}x_1+x_2=1\\x_1.x_2=-5\end{cases}\)

  • \(A=x_1^2+x_2^2=\left(x_1+x_2\right)^2-2x_1x_2=1-2.\left(-5\right)=11\)
  • \(B=x_1^3+x_2^3=\left(x_1+x_2\right)^3-3x_1x_2\left(x_1+x_2\right)=1-3.\left(-5\right).1=16\)
  • \(C=\left(2x_1+x_2\right)\left(2x_2+x_1\right)=\left(1+x_1\right)\left(1+x_2\right)=\left(x_1+x_2\right)+x_1.x_2+1=1-5+1=-3\)

\(y_1+y_2=\left(x_1+x_2\right)+\dfrac{x_1+x_2}{x_1x_2}\)

\(=\dfrac{-5}{3}+\dfrac{-5}{3}:\left(-2\right)=\dfrac{-5}{3}+\dfrac{5}{6}=\dfrac{-5}{6}\)

\(y_1y_2=\left(x_1+\dfrac{1}{x_2}\right)\left(x_2+\dfrac{1}{x_1}\right)\)

\(=x_1x_2+2+\dfrac{1}{x_1x_2}=\left(-2\right)+2+\dfrac{1}{\left(-2\right)}=\dfrac{-1}{2}\)

Pt cần tìm có dạng là \(y^2+\dfrac{5}{6}y-\dfrac{1}{2}=0\)

11 tháng 3 2018

Dùng định lí Viète vào pt cho ta:
\(\left\{{}\begin{matrix}S=x_1+x_2=2\\P=x_1x_2=\dfrac{1}{3}\end{matrix}\right.\)

a) \(A=\left(x_1-1\right)\left(x_2-1\right)=x_1x_2-\left(x_1+x_2\right)+1=-\dfrac{2}{3}\)

b)\(B=x_1\left(x_2-1\right)+x_2\left(x_1-1\right)=2x_1x_2-\left(x_1+x_2\right)=-\dfrac{4}{3}\)

c)\(C=\sqrt{x_1}+\sqrt{x_2}=\sqrt{\left(\sqrt{x_1}+\sqrt{x_2}\right)^2}=\sqrt{x_1+x_2+2\sqrt{x_1x_2}}=\sqrt{2+2\sqrt{\dfrac{1}{3}}}\)

Tới đó hết giải được tiếp :)
d)\(D=x_1\sqrt{x_2}+x_2\sqrt{x_1}=\sqrt{x_1x_2}.\left(\sqrt{x_1}+\sqrt{x_2}\right)\) rồi thế kết quả câu C và biểu thức từ trên.

Xét \(\Delta=\left(2m-1\right)^2-8\left(m-1\right)=4m^2-12m+9=\left(2m-3\right)^2\ge0\)

=> PT luôn có 2 nghiệm x1,x2 với mọi m

Theo hệ thức Viet ta có \(\hept{\begin{cases}x_1+x_2=\frac{1-2m}{2}\\x_1x_2=\frac{m-1}{2}\end{cases}}\)

\(\Rightarrow A=\left(x_1+x_2\right)^2-3x_1x_2=\left(\frac{1-2m}{2}\right)^2-\frac{3\left(m-1\right)}{2}\)

\(=\frac{1-4m+4m^2-6m+6}{4}=\frac{4m^2-10m+7}{4}\)

\(=\frac{\left(2m-\frac{5}{2}\right)^2+\frac{3}{4}}{4}\ge\frac{3}{16}\)

Dấu "=" xảy ra khi \(2m=\frac{5}{2}\Rightarrow m=\frac{5}{4}\Rightarrow\frac{a}{b}=\frac{5}{4}\)

\(\Rightarrow4a=5b\Rightarrow2a=\frac{5b}{2}\)

lúc đó \(P=\frac{5b}{2}+2b=\frac{9b}{2}\)