\(\left...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 10 2023

\(\left\{{}\begin{matrix}2x-y=1\\x-2y=-1\end{matrix}\right.\)

Ta có:

\(D=-4+1=-3\ne0\)

\(D_x=-2-1=-3\ne0\)

\(D_y=-2-1=-3\ne0\)

Vậy Hệ phương trình đã cho có 1 nghiệm duy nhất.

 

5 tháng 1 2019

Hỏi đáp ToánCòn lại tương tự

6 tháng 1 2019

có mấy bài sau k

cho mình xinn

4 tháng 10 2023

Ta có:

2/(-1) ≠ 1/1 (-2 ≠ 1)

⇒ Hệ phương trình đã cho có nghiệm duy nhất

5 tháng 1 2019

a,

\(\left\{{}\begin{matrix}2x+y=1\\x-y=2\end{matrix}\right.\)

<=> \(\left\{{}\begin{matrix}2x+y+x-y=1+2\\x-y=2\end{matrix}\right.\)

<=> \(\left\{{}\begin{matrix}3x=3\\x-y=2\end{matrix}\right.\)

<=> \(\left\{{}\begin{matrix}x=1\\1-y=2\end{matrix}\right.\)

<=> \(\left\{{}\begin{matrix}x=1\\y=-1\end{matrix}\right.\)

b, không có nghiệm.

c, không giải được.

17 tháng 12 2022

a: =>3x=3 và x-y=2

=>x=1 và y=-1

b: =>0x=-3 và x+2y=2

=>Hệ vô nghiệm

c: =>2x+y=3 và 2x+y=3

=>0x=0 và 2x+y=3

=>Hệ có vô số nghiệm theo dạng tổng quát là \(\left\{{}\begin{matrix}x\in R\\y=3-2x\end{matrix}\right.\)

bài 1: ko giải hệ phương trình, dự đoán số nghiệm của các hệ phương trình sau: a) \(\left\{{}\begin{matrix}3x+2y=4\\0x+4y=-8\end{matrix}\right.\) b)\(\left\{{}\begin{matrix}0x-5y=-11\\2x-0y=2\sqrt{3}\end{matrix}\right.\) c)\(\left\{{}\begin{matrix}-2x+y=\dfrac{1}{2}\\-3x+\dfrac{3}{2}y=\dfrac{3}{4}\end{matrix}\right.\) d) \(\left\{{}\begin{matrix}2\sqrt{2}x+4y=3\\-\sqrt{2}x-2y=\dfrac{3}{2}\end{matrix}\right.\) bài 2: cho hệ...
Đọc tiếp

bài 1: ko giải hệ phương trình, dự đoán số nghiệm của các hệ phương trình sau:

a) \(\left\{{}\begin{matrix}3x+2y=4\\0x+4y=-8\end{matrix}\right.\) b)\(\left\{{}\begin{matrix}0x-5y=-11\\2x-0y=2\sqrt{3}\end{matrix}\right.\)

c)\(\left\{{}\begin{matrix}-2x+y=\dfrac{1}{2}\\-3x+\dfrac{3}{2}y=\dfrac{3}{4}\end{matrix}\right.\) d) \(\left\{{}\begin{matrix}2\sqrt{2}x+4y=3\\-\sqrt{2}x-2y=\dfrac{3}{2}\end{matrix}\right.\)

bài 2: cho hệ phương trình \(\left\{{}\begin{matrix}x+y=1\\mx+y=2m\end{matrix}\right.\) xác định các giá trị của tham số m để hệ phương trình:

a) có nghiệm duy nhất b) vô nghiệm

c) vô số nghiệm

bài 3: hãy kiểm tra xem mỗi cặp số sau có là nghiệm của hệ phương trình tương ứng hay ko ?

a) (1;2) và \(\left\{{}\begin{matrix}3x-5y=-7\\2x+y=4\end{matrix}\right.\) b) (-2;5) và \(\left\{{}\begin{matrix}2x-3y=-19\\-3x+2y=7\end{matrix}\right.\)

bài 4: cho hệ phương trình \(\left\{{}\begin{matrix}2mx+y=m\\x-my=-1-6m\end{matrix}\right.\) Tìm các giá trị của tham số m để cặp số ( -2;1) là nghiệm của hệ phương đã cho.

bài 5: cho 2 phương trình đường thẳng:

d1: 2x-y=5 và d2: x-2y=1

a) vẽ hai đường thẳng d1 và d2 trên cùng một hệ trục tọa độ.

b) từ đò thị của d1 và d2 tìm nghiệm của hệ phương trình:

\(\left\{{}\begin{matrix}2x-y=5\\x-2y=1\end{matrix}\right.\)

c) cho đường thẳng d3: mx+(2m-1)y=3. Tìm các giá trị của tham số m để ba đường thẳng d1, d2 và d3 đồng quy.

cảm ơn mn nhé !

1
17 tháng 12 2022

Bài 5:

b: Tọa độ giao điểm là:

\(\left\{{}\begin{matrix}2x-y=5\\2x-4y=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=1\\x=1+2y=3\end{matrix}\right.\)

c; THay x=3 và y=1 vào (d3), ta được:

3m+1(2m-1)=3

=>5m-1=3

=>5m=4

=>m=4/5

16 tháng 6 2017

Hệ hai phương trình bậc nhất hai ẩn

b: \(\dfrac{3}{2}< >\dfrac{2}{-3}\)

nên hệ có 1 nghiệm duy nhất

c: 3/2<>0/1

nên hệ có 1 nghiệmduy nhất

d: 0/1<>-1/-1

nên hệ có 1 nghiệm duy nhất

e: 1/2=2/4<>3/1

nên hệ ko có nghiệm

f: 1:1/2=1:1/2=1:1/2

nên hệ có vô số nghiệm

4 tháng 10 2019

b) Lấy pt đầu trừ pt dưới thu được:

\(x^3-y^3+2\left(x-y\right)=0\)

\(\Leftrightarrow\left(x-y\right)\left(x^2+xy+y^2+2\right)=0\)

Do \(x^2+xy+y^2=\left(x+\frac{y}{2}\right)^2+\frac{3y^2}{4}+2>0\)

Do đó x = y. Thay vào pt đầu thu được:

\(x^3-2x-1=0\Leftrightarrow\left(x+1\right)\left(x^2-x-1\right)=0\)

c) Lấy pt trên trừ pt dưới:

\(2\left(x^2-y^2\right)-3\left(x-y\right)=0\)

\(\Leftrightarrow\left(x-y\right)\left(2x+2y-3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=y\\2x+2y-3=0\end{matrix}\right.\)

Auto làm nốt:D

P/s: Is that true?

AH
Akai Haruma
Giáo viên
12 tháng 9 2018

Câu a)

Áp dụng BĐT AM-GM cho 2 số không âm:

\(\sqrt{\frac{1-x}{2y+1}}+\sqrt{\frac{2y+1}{1-x}}\geq 2\sqrt{\sqrt{\frac{1-x}{2y+1}}.\sqrt{\frac{2y+1}{1-x}}}=2\sqrt{1}=2\)

Dấu "=" xảy ra khi \(\sqrt{\frac{1-x}{2y+1}}=\sqrt{\frac{2y+1}{1-x}}\Rightarrow \frac{1-x}{2y+1}=\frac{2y+1}{1-x}\)

\(\Leftrightarrow \frac{-y}{2y+1}=\frac{2y+1}{-y}\) (do \(x-y=1\) )

\(\Rightarrow y^2=(2y+1)^2\)

\(\Leftrightarrow (2y+1-y)(2y+1+y)=0\Rightarrow \left[\begin{matrix} y=-1\\ y=-\frac{1}{3}\end{matrix}\right.\)

Thử lại thấy chỉ \(y=-\frac{1}{3}\) thỏa mãn kéo theo \(x=1+y=\frac{2}{3}\)

Vậy \((x,y)=(\frac{2}{3}; \frac{-1}{3})\)

AH
Akai Haruma
Giáo viên
12 tháng 9 2018

Câu b)

Thay \(y=2x-1\) vào pt thứ nhất ta có:

\(|x-(2x-1)|=|2(2x-1)-1|\)

\(\Leftrightarrow |1-x|=|4x-3|\)

\(\Rightarrow \left[\begin{matrix} 1-x=4x-3\\ 1-x=3-4x\end{matrix}\right.\Rightarrow \left[\begin{matrix} x=\frac{4}{5}\\ x=\frac{2}{3}\end{matrix}\right.\)

\(\Rightarrow \left[\begin{matrix} y=\frac{3}{5}\\ y=\frac{1}{3}\end{matrix}\right.\) (tương ứng)