Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
d) Ta có: n + 6 chia hết cho n+1
n+1 chia hết cho n+1
=> [(n+6) - (n+1)] chia hết cho n+1
=> (n+6 - n - 1) chia hết cho n + 1
=> 5 chia hết cho n+1
=> n+1 thuộc { 1; 5 }
Nếu n+1 = 1 thì n = 1-1=0
Nếu n+1=5 thì n= 5-1=4.
Vậy n thuộc {0;4}
e) Ta có: 2n+3 chia hết cho n-2 (1)
n-2 chia hết cho n-2 => 2(n-2) chia hết cho n-2 => 2n - 4 chia hết cho n-2 (2)
Từ (1) và (2) => [(2n+3) - (2n-4)] chia hết cho n-2
=> (2n+3 - 2n +4) chia hết cho n-2
=> 7 chia hết cho n-2
Sau đó xét các trường hợp tương tự như phần d.
A=n^2+n+1=n(n+1)+1
có n(n+1) là tích hai số tự nhiên liên tiếp do vậy luôn chẵn, và tân cùng không bao giờ bằng 4 vậy A luôn lẻ, tận cùng ko bao giờ bằng 5=> không chia 2 =>ko chia hết cho 4, 5
Giả sử như mệnh đề trên đúng :
n^2+1 chia hết cho 4
* Nếu n chẵn : n = 2k , k thuộc N
=> n^2 +1 = 4k^2 +1 k chia hết cho 4
* nếu n lẻ : n = 2k + 1
=> n^2 +1 = 4k^2 +4k +2
=> n^2 +1 = 4k(k+1)+2
k , k +1 là 2 số tự nhiên liên tiếp
=> k(k+1) chia hết cho 2
=> 4k(k+1)chia hết cho 4
=> 4k(k+1)+2 chia cho 4 , dư 2
=> 4k (k+1)+2 k chia hết cho 4
\(A=5+5^2+5^3+5^4+...+5^{11}+5^{12}\)
\(=\left(5+5^2\right)+\left(5^3+5^4\right)+...+\left(5^{11}+5^{12}\right)\)
\(=\left(5+5^2\right)+5^2\left(5+5^2\right)+...+5^{10}\left(5+5^2\right)\)
\(=30\left(1+5^2+...+5^{10}\right)⋮30\)
Do các số \(5^2,5^3,...,5^{80}\)đều chia hết cho 25 mà \(5\)không chia hết cho 25
do đó A không chia hết cho 25
c)D=4+42+43+44+...+42012
D=(4+42)+(43+44)+...+(42011+42012)
D=4.5+43.5+45.5+...+42011.5
D=5.(4+43+42011)
=>D chia hết cho 5
=>ĐPCM
`5+5^2+5^3+5^4`
`=5(1+5+5^2+5^3)`
`=5(1+5+25+125)`
`=5(1+25)+5(5+125)`
`=5.26+5.130`
`=130+130.5 vdots 130(đpcm)`