Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Có \(\sqrt{2}< \sqrt{2,25}=1,5\)
\(\sqrt{6}< \sqrt{6,25}=2,5\);
\(\sqrt{12}< \sqrt{12,25}=3,5\);
\(\sqrt{20}< \sqrt{20,25}=4,5\)
=> \(P=\sqrt{2}+\sqrt{6}+\sqrt{12}+\sqrt{20}< 1,5+2,5+3,5+4,5=12\)
Vậy P < 12
Answer:
ý a, tham khảo bài làm của @xyzquynhdi
\(\sqrt{2}+\sqrt{3}+\sqrt{5}\)
\(\sqrt{10+\sqrt{24}+\sqrt{40}+\sqrt{60}}\)
\(=\sqrt{10+2\sqrt{6}+2\sqrt{10}+2\sqrt{15}}\)
\(=\sqrt{\left(\sqrt{2}\right)^2+\left(\sqrt{3}\right)^2+\left(\sqrt{5}\right)^2+2\sqrt{2}\sqrt{3}+2\sqrt{2}\sqrt{5}+2\sqrt{3}\sqrt{5}}\)
\(=\sqrt{\left(\sqrt{2}+\sqrt{3}+\sqrt{5}\right)^2}=\sqrt{2}+\sqrt{3}+\sqrt{5}\)
Ta có \(\sqrt{8}+3< \sqrt{9}+3=3+3=6\)
=> \(\sqrt{8}+3< 6\)
Ta có \(\sqrt{48}< \sqrt{49};\sqrt{35}< \sqrt{36}\)
=> \(\sqrt{48}+\sqrt{35}< \sqrt{49}+\sqrt{46}\)
=> \(\sqrt{48}+\sqrt{35}< 13\)
=> \(\sqrt{48}< 13-\sqrt{35}\)
c) Ta có \(-\sqrt{19}< -\sqrt{17}\)
=> \(\sqrt{31}-\sqrt{19}< \sqrt{31}-\sqrt{17}\)
=> \(\sqrt{31}-\sqrt{19}< \sqrt{36}-17=6-\sqrt{17}\)
d) Ta có \(9=\sqrt{81}\Leftrightarrow\sqrt{81}>\sqrt{80}\);
\(-\sqrt{58}>-\sqrt{59}\)
=> \(\sqrt{81}-\sqrt{58}>\sqrt{80}-\sqrt{59}\)
<=> \(9-\sqrt{58}>\sqrt{80}-\sqrt{59}\)
a) Ta có:
\(6\sqrt{5}=\sqrt{5\cdot36}=\sqrt{180}\)
\(5\sqrt{6}=\sqrt{6\cdot25}=\sqrt{200}\)
Mà \(\sqrt{180}< \sqrt{200}\)
Vậy: \(6\sqrt{5}< 5\sqrt{6}\)
x) Ta có: \(\sqrt{8}< \sqrt{9}\Rightarrow\sqrt{8}< 3\)
Công hai vế của BĐT cho 3:
Suy ra: \(\sqrt{8}+3< 3+3=6\)
Vậy: \(\sqrt{8}+3< 6\)
b) Ta có:
\(\sqrt{2\sqrt{3}}=\sqrt[4]{12}\)
Tương tự: \(\sqrt{3\sqrt{2}}=\sqrt[4]{18}\)
Mà \(\sqrt[4]{18}>\sqrt[4]{12}\)
Vậy.....
d) Ta có:
\(2\sqrt{5}-5=\sqrt{5}+\sqrt{5}-5=\left(\sqrt{5}-2\right)+\left(\sqrt{5}-3\right)>\sqrt{5}-3\)
Vậy ......
e) Ta có:
\(\sqrt{2}-2=\frac{3\sqrt{2}-6}{3}\)
\(\sqrt{3}-3=\frac{2\sqrt{3}-6}{2}\)
Mà \(3\sqrt{2}>2\sqrt{3}\)
Vậy .....
f) ........... Đang thinking
Ta có:
\(\left(\sqrt{3+\sqrt{20}}\right)^2-\left(\sqrt{5+\sqrt{5}}\right)^2\)
\(=3+\sqrt{20}-5-\sqrt{5}\)
\(=-2+2\sqrt{5}-\sqrt{5}\)
\(=-2+\sqrt{5}\)
Ta thấy: \(5>4\Rightarrow\sqrt{5}>\sqrt{4}\Rightarrow\sqrt{5}>2\)
Do đó : hiệu trên >0
Suy ra : \(\sqrt{3+\sqrt{20}}>\sqrt{5+\sqrt{5}}\)
\(\frac{2014}{\sqrt{2015}}+\frac{2015}{\sqrt{2014}}=\frac{2015-1}{\sqrt{2015}}+\frac{2014+1}{\sqrt{2014}}\)
= \(\sqrt{2014}+\sqrt{2015}+\frac{1}{\sqrt{2014}}-\frac{1}{\sqrt{2015}}>\sqrt{2014}+\sqrt{2015}\)
Ta có:
\(\sqrt{2016}-\sqrt{2017}=\frac{\left(\sqrt{2016}-\sqrt{2017}\right)\left(\sqrt{2016}+\sqrt{2017}\right)}{\sqrt{2016}+\sqrt{2017}}\)
\(=\frac{2016-2017}{\sqrt{2016}+\sqrt{2017}}=-\frac{1}{\sqrt{2016}+\sqrt{2017}}\)
\(\sqrt{2017}-\sqrt{2018}=\frac{\left(\sqrt{2017}-\sqrt{2018}\right)\left(\sqrt{2017}+\sqrt{2018}\right)}{\sqrt{2017}+\sqrt{2018}}\)
\(=\frac{2017-2018}{\sqrt{2017}+\sqrt{2018}}=-\frac{1}{\sqrt{2017}+\sqrt{2018}}\)
Ta thấy rằng:
\(\sqrt{2018}>\sqrt{2016}\)
\(\Leftrightarrow\sqrt{2017}+\sqrt{2018}>\sqrt{2016}+\sqrt{2017}\)
\(\Leftrightarrow\frac{1}{\sqrt{2017}+\sqrt{2018}}< \frac{1}{\sqrt{2016}+\sqrt{2017}}\)
\(\Leftrightarrow-\frac{1}{\sqrt{2017}+\sqrt{2018}}>-\frac{1}{\sqrt{2016}+\sqrt{2017}}\)
Vậy \(\sqrt{2017}-\sqrt{2018}>\sqrt{2016}-\sqrt{2017}\)
\(\sqrt{1+\sqrt{6}}\)lớn hơn
Đoán vậy k biết đúng / sai
HOK T ~