\(P=\sqrt{102-2\sqrt{101}}+\sqrt{103+2\sqrt{101}}...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 12 2015

\(P=\sqrt{101-2\sqrt{101}+1}+\sqrt{101+2\sqrt{101}+1+1}\)

    \(=\sqrt{\left(\sqrt{101}-1\right)^2}+\sqrt{\left(\sqrt{101}+1\right)^2+1}>\sqrt{101}-1+\sqrt{101}+1=2\sqrt{101}>2.\sqrt{100}=2.10=20\)

=> P > 20

29 tháng 1 2022

a) Có \(\sqrt{2}< \sqrt{2,25}=1,5\)

\(\sqrt{6}< \sqrt{6,25}=2,5\)

\(\sqrt{12}< \sqrt{12,25}=3,5\)

\(\sqrt{20}< \sqrt{20,25}=4,5\)

=> \(P=\sqrt{2}+\sqrt{6}+\sqrt{12}+\sqrt{20}< 1,5+2,5+3,5+4,5=12\)

Vậy P < 12

30 tháng 1 2022

Answer:

ý a, tham khảo bài làm của @xyzquynhdi

\(\sqrt{2}+\sqrt{3}+\sqrt{5}\)

\(\sqrt{10+\sqrt{24}+\sqrt{40}+\sqrt{60}}\)

\(=\sqrt{10+2\sqrt{6}+2\sqrt{10}+2\sqrt{15}}\)

\(=\sqrt{\left(\sqrt{2}\right)^2+\left(\sqrt{3}\right)^2+\left(\sqrt{5}\right)^2+2\sqrt{2}\sqrt{3}+2\sqrt{2}\sqrt{5}+2\sqrt{3}\sqrt{5}}\)

\(=\sqrt{\left(\sqrt{2}+\sqrt{3}+\sqrt{5}\right)^2}=\sqrt{2}+\sqrt{3}+\sqrt{5}\)

27 tháng 5 2017

Ôn tập Căn bậc hai. Căn bậc ba

27 tháng 8 2018

Mình học lớp 6 nên chẳng may có gì sai bạn(chị anh) sửa giúp em nhé:

Ta có:

\(\left(\sqrt{n+a}+\sqrt{n-a}\right)^2< \left(2\sqrt{n}\right)^2\) (bình phương cả 2 vế)

=> \(2n+2\sqrt{n^2-a^2}< 4n\)

=>\(2\sqrt{n^2-a^2}< 2n\)

=>\(\sqrt{n^2-a^2}< n\)

=>n2 - a< n(bình phương cả 2 vế)

Vì |a|>0

=>a2 > 0

=> n2-a< n

Vậy \(\sqrt{n+a}+\sqrt{n-a}< 2\sqrt{n}\)

câu b làm tương tự nhé:

23 tháng 9 2016

\(\frac{2014}{\sqrt{2015}}+\frac{2015}{\sqrt{2014}}=\frac{2015-1}{\sqrt{2015}}+\frac{2014+1}{\sqrt{2014}}\)

\(\sqrt{2014}+\sqrt{2015}+\frac{1}{\sqrt{2014}}-\frac{1}{\sqrt{2015}}>\sqrt{2014}+\sqrt{2015}\)

6 tháng 7 2017

Ta có:

\(\left(\sqrt{n+a}+\sqrt{n-a}\right)^2< \left(1+1\right)\left(n+a+n-a\right)=4n\)

\(\Rightarrow\sqrt{n+a}+\sqrt{n-a}< \sqrt{4n}=2\sqrt{n}\)

cm thì xong r` mà BĐT trên thì + biểu thức dưới là - là sao ??

18 tháng 10 2015

Ta có : \(\frac{1}{\sqrt{k}+\sqrt{k+1}}=2\left(\sqrt{k+1}-\sqrt{k}\right)\)

Áp dụng : A = 2\(\left(\sqrt{2}-\sqrt{1}+\sqrt{3}-\sqrt{2}+...+\sqrt{101}-\sqrt{100}\right)\)=  \(2\left(\sqrt{101}-1\right)\) \(\ge\) \(2\left(\sqrt{100}-1\right)=2\left(10-1\right)=2\times9=18\) 

B = \(\frac{181}{20}=9,05\) < 18 nên suy ra : A>B