Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
no la bdt bunhia do ban . nhan a+b+c voi ca 2 ve . ap dung bunhia la ra
1. BĐT ban đầu
<=> \(\left(\frac{1}{3}-\frac{b}{a+3b}\right)+\left(\frac{1}{3}-\frac{c}{b+3c}\right)+\left(\frac{1}{3}-\frac{a}{c+3a}\right)\ge\frac{1}{4}\)
<=>\(\frac{a}{a+3b}+\frac{b}{b+3c}+\frac{c}{c+3a}\ge\frac{3}{4}\)
<=> \(\frac{a^2}{a^2+3ab}+\frac{b^2}{b^2+3bc}+\frac{c^2}{c^2+3ac}\ge\frac{3}{4}\)
Áp dụng BĐT buniacoxki dang phân thức
=> BĐT cần CM
<=> \(\frac{\left(a+b+c\right)^2}{a^2+b^2+c^2+3\left(ab+bc+ac\right)}\ge\frac{3}{4}\)
<=> \(a^2+b^2+c^2\ge ab+bc+ac\)luôn đúng
=> BĐT được CM
2) \(a+b+c\le ab+bc+ca\le\frac{\left(a+b+c\right)^2}{3}\)\(\Leftrightarrow\)\(\left(a+b+c\right)^2-3\left(a+b+c\right)\ge0\)
\(\Leftrightarrow\)\(\left(a+b+c\right)\left(a+b+c-3\right)\ge0\)\(\Leftrightarrow\)\(a+b+c\ge3\)
ko mất tính tổng quát giả sử \(a\ge b\ge c\)
Có: \(3\le a+b+c\le ab+bc+ca\le3a^2\)\(\Leftrightarrow\)\(3a^2\ge3\)\(\Leftrightarrow\)\(a\ge1\)
=> \(\frac{1}{1+a+b}+\frac{1}{1+b+c}+\frac{1}{1+c+a}\le\frac{3}{1+2a}\le1\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(a=b=c=1\)
Bài 2: Ta có 2 đẳng thức ngược chiều: \(\frac{8\left(a^2+b^2+c^2\right)}{ab+bc+ca}\ge8;\frac{27\left(a+b\right)\left(b+c\right)\left(c+a\right)}{\left(a+b+c\right)^3}\le8\)
Áp dụng BĐT AM-GM ta có:
\(\frac{8\left(a^2+b^2+c^2\right)}{ab+bc+ca}+\frac{27\left(a+b\right)\left(b+c\right)\left(c+a\right)}{\left(a+b+c\right)^3}\)\(\ge2\sqrt{\frac{8\left(a^2+b^2+c^2\right)}{ab+bc+ca}.\frac{27\left(a+b\right)\left(b+c\right)\left(c+a\right)}{\left(a+b+c\right)^3}}\)
Suy ra BĐT đã cho là đúng nếu ta chứng minh được
\(27\left(a^2+b^2+c^2\right)\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge8\left(ab+bc+ca\right)\left(a+b+c\right)^3\left(1\right)\)
Sử dụng đẳng thức \(\left(a+b\right)\left(b+c\right)\left(c+a\right)=\left(a+b+c\right)\left(ab+bc+ca\right)-abc\)và theo AM-GM: \(abc\le\frac{1}{9}\left(a+b+c\right)\left(ab+bc+ca\right)\)ta được \(\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge\frac{8}{9}\left(a+b+c\right)\left(ab+bc+ca\right)\left(2\right)\)
Từ (1)và(2) suy ra ta chỉ cần chứng minh \(3\left(a^2+b^2+c^2\right)\ge\left(a+b+c\right)^2\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\)đúng=> đpcm
Đẳng thức xảy ra khi và chỉ khi a=b=c
Bài 3:
Ta có 2 BĐT ngược chiều: \(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\ge\frac{3}{2};\sqrt[3]{\frac{abc}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}}\le\sqrt[3]{\frac{1}{8}}=\frac{1}{2}\)
Bổ đề: \(x^3+y^3+z^3+3xyz\ge xy\left(x+y\right)+yz\left(y+z\right)+zx\left(z+x\right)\left(1\right)\forall x,y,z\ge0\)
Chứng minh: Không mất tính tổng quát, giả sử \(x\ge y\ge z\). Khi đó:
\(VT\left(1\right)-VP\left(1\right)=x\left(x-y\right)^2+z\left(y-z\right)^2+\left(x-y+z\right)\left(x-y\right)\left(y-z\right)\ge0\)
Áp dụng BĐT AM-GM ta có:
\(\left(a+b\right)^2\left(b+c\right)^2\left(c+a\right)^2\ge64\left(abc\right)^2\)\(\Leftrightarrow\frac{abc}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\ge\left[\frac{4abc}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\right]^3\)
Suy ra ta chỉ cần chứng minh \(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}+\frac{4abc}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\ge2\)
\(\Leftrightarrow a\left(a+b\right)\left(a+c\right)+b\left(b+c\right)\left(b+a\right)+c\left(c+a\right)\left(c+b\right)+4abc\)\(\ge2\left(a+b\right)\left(b+c\right)\left(c+a\right)\)\(\Leftrightarrow a^3+b^3+c^3+3abc\ge ab\left(a+b\right)+bc\left(b+c\right)+ca\left(c+a\right)\)đúng theo bổ đề
Đẳng thức xảy ra khi và chỉ khi a=b=c hoặc a=b,c=0 và các hoán vị
BĐT phụ:\(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\Leftrightarrow\left(x-y\right)^2\ge0\left(true\right)\)
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{4}{a+b}+\frac{1}{c}\ge\frac{9}{a+b+c}\) ( đpcm )
Vậy.......
mấy bài cơ bản nên cũng dễ, mk có thể giải hết cho bn vs 1 đk : bn đăng từng câu 1 thôi nhé !
bài 3 có thể lên gg tìm kỹ thuật AM-GM (cosi) ngược dấu
bài 8 c/m bđt phụ 5b3-a3/ab+3b2 </ 2b-a ( biến đổi tương đương)
những câu còn lại 1 nửa dùng bđt AM-GM , 1 nửa phân tích nhân tử ròi dựa vào điều kiện
2 )\(\frac{1}{1+x}\ge\left(1-\frac{1}{1+y}\right)+\left(1-\frac{1}{1+z}\right)=\frac{y}{1+y}+\frac{z}{1+z}\ge2\sqrt{\frac{yz}{\left(1+y\right)\left(1+z\right)}}\)
CMTT \(\frac{1}{1+y}\ge2\sqrt{\frac{xy}{\left(1+x\right)\left(1+y\right)}};\frac{1}{1+z}\ge2\sqrt{\frac{xy}{\left(1+x\right)\left(1+y\right)}}\)
Nhân vế với vế 3 bđt được
\(\frac{1}{\left(1+x\right)\left(1+y\right)\left(1+z\right)}\ge\frac{8xyz}{\left(1+x\right)\left(1+y\right)\left(1+z\right)}\)
\(\Rightarrow P=xyz\le\frac{1}{8}\)
Dấu "=" xảy ra khi z=y=z = 1/2
1)
\(\Leftrightarrow\frac{\left(a-b\right)^2}{8b}>\frac{\left(\sqrt{a}-\sqrt{b}\right)^2}{2}\Leftrightarrow\frac{a-b}{2\sqrt{b}}>\sqrt{a}-\sqrt{b}\)
\(\Leftrightarrow a-2\sqrt{ab}+b>0\Leftrightarrow\left(\sqrt{a}-\sqrt{b}\right)^2>0\) (có a>b>0 theo gt) (đpcm)
Giả sử \(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\ge\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}+\frac{3}{2}\)
\(< =>\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\ge\frac{3}{2}+\frac{3}{2}=\frac{6}{2}=3\)(bđt nesbitt)
Giờ ta chỉ cần chỉ ra được \(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\ge3\) thì bài toán được hoàn tất chứng minh
Thật vậy , theo BĐT Cauchy ta có \(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\ge3\sqrt[3]{\frac{a}{b}.\frac{b}{c}.\frac{c}{a}}=3\sqrt[3]{\frac{abc}{abc}}=3\)
Dấu "=" xảy ra khi và chỉ khi \(a=b=c\)
Vậy bài toán đã được hoàn tất chứng minh
p/s : tí mình sẽ chứng minh bđt nesbitt ở dưới nhé
BĐT cần CM <=> \(\frac{a}{b}-\frac{a}{b+c}+\frac{b}{c}-\frac{b}{c+a}+\frac{c}{a}-\frac{c}{a+b}\ge\frac{3}{2}\)
<=> \(\frac{ac}{b\left(b+c\right)}+\frac{ab}{c\left(c+a\right)}+\frac{bc}{a\left(a+b\right)}\ge\frac{3}{2}\) (1)
Đặt: \(A=\frac{ab}{c\left(c+a\right)}+\frac{bc}{a\left(a+b\right)}+\frac{ca}{b\left(b+c\right)}\)
\(A=\frac{a^2b^2}{abc\left(c+a\right)}+\frac{b^2c^2}{abc\left(a+b\right)}+\frac{c^2a^2}{abc\left(b+c\right)}\)
ÁP DỤNG BĐT CAUCHY - SCHWARZ SẼ ĐƯỢC:
=> \(A\ge\frac{\left(ab+bc+ca\right)^2}{abc\left(a+b+b+c+c+a\right)}=\frac{\left(ab+bc+ca\right)^2}{2abc\left(a+b+c\right)}\)
TA TIẾP TỤC 1 BĐT: \(\left(ab+bc+ca\right)^2\ge3abc\left(a+b+c\right)\)
=> \(A\ge\frac{3abc\left(a+b+c\right)}{2abc\left(a+b+c\right)}=\frac{3}{2}\) (2)
TỪ (1) VÀ (2) => TA CÓ ĐPCM.
Câu hỏi của Called love - Toán lớp 8 - Học toán với OnlineMath
Ban jtrar My làm òi nhé !
Bạn tham khảo tại đây :
Câu hỏi của Nguyễn Anh Quân - Toán lớp 8 - Học toán với OnlineMath
~ Ủng hộ nhé