![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
11.
\(SA\perp\left(ABCD\right)\Rightarrow\) AC là hình chiếu vuông góc của SC lên (ABCD)
\(\Rightarrow\widehat{SCA}\) là góc giữa SC và (ABCD)
\(\Rightarrow\widehat{SCA}=\varphi\)
\(AC=BD=\sqrt{AB^2+AD^2}=a\sqrt{13}\)
\(tan\varphi=\frac{SA}{AC}=\frac{\sqrt{13}}{13}\)
12.
Hai vecto \(\overrightarrow{AB}\) và \(\overrightarrow{EF}\) song song cùng chiều
\(\Rightarrow\left(\overrightarrow{AB};\overrightarrow{EG}\right)=\left(\overrightarrow{EF};\overrightarrow{EG}\right)=\widehat{GEF}=45^0\)
8.
Qua O có 1 và chỉ 1 mặt phẳng vuông góc \(\Delta\)
9.
Gọi O là tâm tam giác BCD
\(\Rightarrow AO\perp\left(BCD\right)\Rightarrow AO\perp CD\)
Mà \(CD\perp BO\) (trung tuyến đồng thời là đường cao)
\(\Rightarrow CD\perp\left(ABO\right)\Rightarrow CD\perp AB\)
\(\Rightarrow\overrightarrow{AB}.\overrightarrow{CD}=0\)
10.
\(AB\perp AD\Rightarrow\widehat{BAD}=90^0\)
![](https://rs.olm.vn/images/avt/0.png?1311)
c/
\(\Leftrightarrow tan\left(60^0-x\right)=-\frac{1}{\sqrt{3}}\)
\(\Rightarrow60^0-x=-30^0+k180^0\)
\(\Rightarrow x=90^0+k180^0\)
d/
\(\Leftrightarrow tan\left(3x+\frac{2\pi}{5}\right)=-tan\left(\frac{\pi}{5}\right)\)
\(\Leftrightarrow tan\left(3x+\frac{2\pi}{5}\right)=tan\left(-\frac{\pi}{5}\right)\)
\(\Rightarrow3x+\frac{2\pi}{5}=-\frac{\pi}{5}+k\pi\)
\(\Rightarrow x=-\frac{\pi}{5}+\frac{k\pi}{3}\)
a/
\(\Leftrightarrow tan2x=-tan40^0\)
\(\Leftrightarrow tan2x=tan\left(-40^0\right)\)
\(\Rightarrow2x=-40^0+k180^0\)
\(\Rightarrow x=-20^0+k90^0\)
b/
\(\Leftrightarrow tan\left(2x-15^0\right)=1\)
\(\Rightarrow2x-15^0=45^0+k180^0\)
\(\Rightarrow x=30^0+k90^0\)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(2sin\left(x-30^0\right)=\sqrt{2}\)
\(\Leftrightarrow sin\left(x-30^0\right)=\frac{\sqrt{2}}{2}=sin\left(45^0\right)\)
\(\Rightarrow\left[{}\begin{matrix}x-30^0=45^0+k360^0\\x-30^0=135^0+k360^0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=75^0+k360^0\\x=165^0+k360^0\end{matrix}\right.\)
\(sin2x=sin\left(x-\frac{2\pi}{3}\right)\)
\(\Rightarrow\left[{}\begin{matrix}2x=x-\frac{2\pi}{3}+k2\pi\\2x=\pi-x+\frac{2\pi}{3}+k2\pi\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=-\frac{2\pi}{3}+k2\pi\\x=\frac{5\pi}{9}+\frac{k2\pi}{3}\end{matrix}\right.\)
\(cos2x=sin\left(x-45^0\right)\)
\(\Leftrightarrow cos2x=cos\left(135^0-x\right)\)
\(\Rightarrow\left[{}\begin{matrix}2x=135^0-x+k360^0\\2x=x-135^0+k360^0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=45^0+k120^0\\x=-135^0+k360^0\end{matrix}\right.\)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(cos3x=-cos\left(x-120^0\right)\)
\(\Leftrightarrow cos3x=cos\left(x+60^0\right)\)
\(\Rightarrow\left[{}\begin{matrix}3x=x+60^0+k360^0\\3x=-x-60^0+k360^0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=30^0+k180^0\\x=-15^0+k90^0\end{matrix}\right.\)
\(\Leftrightarrow sin\left(2x-90^0\right)=cos2x\)
\(\Leftrightarrow-cos2x=cos2x\)
\(\Rightarrow cos2x=0\Rightarrow2x=90^0+k180^0\)
\(\Rightarrow x=45^0+k90^0\)
\(cos^2x+sin^2x+2sinx.cosx=1+cos4x\)
\(\Leftrightarrow1+sin2x=1+cos4x\)
\(\Leftrightarrow cos4x=sin2x=cos\left(\frac{\pi}{2}-2x\right)\)
\(\Rightarrow\left[{}\begin{matrix}4x=\frac{\pi}{2}-2x+k2\pi\\4x=2x-\frac{\pi}{2}+k2\pi\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=\frac{\pi}{12}+\frac{k\pi}{3}\\x=-\frac{\pi}{4}+k\pi\end{matrix}\right.\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Câu 8:
Kẻ \(AH\perp SM\)
Trong mặt phẳng (SBC), qua H kẻ đường thẳng song song BC cắt SB và SC lần lượt tại P và Q
\(\Rightarrow\Delta APQ\) là thiết diện của (P) và chóp
\(AM=\frac{a\sqrt{3}}{2}\) (trung tuyến tam giác đều)
\(\Rightarrow SA=AM\Rightarrow\Delta SAM\) vuông cân tại A
\(\Rightarrow AH=\frac{SA\sqrt{2}}{2}=\frac{a\sqrt{6}}{4}\) đồng thời H là trung điểm SM
\(\Rightarrow PQ=\frac{1}{2}BC=\frac{a}{2}\) (đường trung bình)
\(\Rightarrow S_{\Delta APQ}=\frac{1}{2}AH.PQ=\frac{a^2\sqrt{6}}{16}\)
Câu 9.
\(SH\perp\left(ABC\right)\Rightarrow\widehat{SAH}\) là góc giữa SA và (ABC)
\(SH=AH=\frac{a\sqrt{3}}{2}\Rightarrow\Delta SAH\) vuông cân tại H
\(\Rightarrow\widehat{SAH}=45^0\)
Câu 6:
Bạn kiểm tra lại đề, \(SO\perp\left(ABCD\right)\Rightarrow SO\perp OB\Rightarrow\widehat{SOB}=90^0\)
Nên không thể có chuyện \(tan\widehat{SOB}=\frac{1}{2}\)
Câu 7:
H là trực tâm tam giác ABC \(\Rightarrow BH\perp AC\)
Mà \(SA\perp\left(ABC\right)\Rightarrow SA\perp BH\)
\(\Rightarrow BH\perp\left(SAC\right)\Rightarrow BH\perp SC\) (1)
K là trực tâm tam giác SBC \(\Rightarrow BK\perp SC\) (2)
(1);(2) \(\Rightarrow SC\perp\left(BHK\right)\Rightarrow\) góc giữa SC và (BHK) bằng 90 độ
![](https://rs.olm.vn/images/avt/0.png?1311)
1. T= \(\frac{\pi}{\left|a\right|}=\frac{\pi}{3}\)
2. \(T_1=\frac{2\pi}{2}=\pi\) ; \(T_2=\frac{2\pi}{\frac{1}{2}}=4\pi\)
=> \(T=BCNN\left(\pi;4\pi\right)=4\pi\)
3. \(\left[{}\begin{matrix}5x-45^o=30^o+k360^o\\5x-45^o=-30^o+k360^o\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}5x=75^o+k360^o\\5x=15^o+k360^o\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=15^o+k72^o\\x=3^0+k72^o\end{matrix}\right.\) \(\left(k\in Z\right)\)
Cho k=-1 thì x= -57 độ or x= -69 độ nên lấy x= -57 độ là no âm lớn nhất => Chọn C
4. Có pt hoành độ giao điểm của 2 đths : sinx = sin3x
\(\Leftrightarrow\left[{}\begin{matrix}3x=x+k2\pi\\3x=\pi-x+k2\pi\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=k\pi\\x=\frac{\pi}{4}+\frac{k\pi}{2}\end{matrix}\right.\left(k\in Z\right)\)
trong \(\left(\frac{-\pi}{2};\frac{3\pi}{2}\right)\) với \(x=k\pi\Rightarrow k\in\left\{0;1\right\}\)
với \(x=\frac{\pi}{4}+\frac{k\pi}{4}\Rightarrow k\in\left\{-1;0;1;2\right\}\)
Vậy 2 đths cắt nhau tại 6 điểm trong \(\left(\frac{-\pi}{2};\frac{3\pi}{2}\right)\)
5. cot = \(\sqrt{3}\) \(\Leftrightarrow tanx=\frac{1}{\sqrt{3}}\Leftrightarrow x=\frac{\pi}{6}+k\pi\left(k\in Z\right)\)
x \(\in\left[0;2017\pi\right]\Rightarrow k\in\left\{0;1;2;....;2015;2016\right\}\)
Vậy ptrinh có 2017 nghiệm.
CHÚC BẠN HỌC TỐT..!!
![](https://rs.olm.vn/images/avt/0.png?1311)
c/
\(\Leftrightarrow2sinx.cosx-2\sqrt{3}cos^2x=0\)
\(\Leftrightarrow2cosx\left(sinx-\sqrt{3}cosx\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}cosx=0\\sinx-\sqrt{3}cosx=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{2}+k\pi\\sinx=\sqrt{3}cosx\left(1\right)\end{matrix}\right.\)
\(\left(1\right)\Leftrightarrow\frac{sinx}{cosx}=\sqrt{3}\Leftrightarrow tanx=\sqrt{3}\)
\(\Rightarrow x=\frac{\pi}{3}+k\pi\)
d/
\(\Leftrightarrow tan\left(3x-50^0\right)=-cot\left(x-30^0\right)\)
\(\Leftrightarrow tan\left(3x-50^0\right)=tan\left(x+60^0\right)\)
\(\Rightarrow3x-50^0=x+60^0+k180^0\)
\(\Rightarrow x=55^0+k90^0\)
a/
\(\Leftrightarrow sinx=2cosx\)
Nhận thấy \(cosx=0\) không phải nghiệm, pt tương đương:
\(\frac{sinx}{cosx}=2\Leftrightarrow tanx=2\)
\(\Leftrightarrow tanx=tana\) (với \(a\in\left(0;\frac{\pi}{2}\right)\) sao cho \(tana=2\))
\(\Rightarrow x=a+k\pi\)
b/
\(tan2x=cotx=tan\left(\frac{\pi}{2}-x\right)\)
\(\Leftrightarrow2x=\frac{\pi}{2}-x+k\pi\)
\(\Rightarrow x=\frac{\pi}{6}+\frac{k\pi}{3}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Phép uay ua tâm O?
Phương pháp để làm dạng này, lấy \(K\left(x_1;y_1\right),I\left(x_2;y_2\right)\in\left(d\right)\) =>\(K'\left(x_1';y_1'\right);I'\left(x_2';y_2'\right)\) là ảnh của K' qua phép quay tâm O góc uay alpha. Khi đó \(K',I'\in\left(d'\right)\)
Áp dụng biểu thức tọa độ:
\(\left\{{}\begin{matrix}x_1'=x_1\cos\alpha-y_1\sin\alpha\\y_1'=x_1\sin\alpha+y_1\cos\alpha\end{matrix}\right.\)
Giờ ta sẽ áp dụng vô bài
Lấy \(K\left(1;2\right)\in\left(d\right)\Rightarrow\left\{{}\begin{matrix}x_K'=1.\cos60^0-2.\sin60^0=\frac{\sqrt{3}}{2}-1\\y_K'=1.\sin60^0+2.\cos60=\frac{1}{2}+\sqrt{3}\end{matrix}\right.\)
\(\Rightarrow K'\left(\frac{\sqrt{3}}{2}-1;\frac{1}{2}+\sqrt{3}\right)\)
\(I\left(4;3\right)\in\left(d\right)\Rightarrow\left\{{}\begin{matrix}x_I'=4.\cos60^0-3\sin60^0=2\sqrt{3}-\frac{3}{2}\\y_I'=4\sin60^0+3\cos60^0=2+\frac{3\sqrt{3}}{2}\end{matrix}\right.\)
\(\Rightarrow I'\left(2\sqrt{3}-\frac{3}{2};2+\frac{3\sqrt{3}}{2}\right)\)
Bạn tự làm nốt nha, giờ chỉ cần viết phương trình đt (d') đi ua 2 điểm K' và I' thôi. Cách chứng minh công thức kia tui chưa biết chứng minh, bởi tui mới đọc sơ sơ dạng này :( Để bao giờ tìm hiểu thêm