K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 6 2016

1/ -12+18y-9=-3(4x-6y+3)

2/ x^3-2x^2+5x=x(x^2-2x+5)

3/Phần này mik chưa nghĩ ra!

24 tháng 6 2016

:( Mình khóc thật rồi đó huhu giải giùm mình ik mà

6 tháng 9 2017

Giải tiêu biểu câu a nhé.

a/ \(5x\left(2x-7\right)+2x\left(8-5x\right)=5\)

\(\Leftrightarrow19x+5=0\)

\(\Leftrightarrow x=-\frac{5}{19}\)

5 tháng 9 2017

cần câu mấy

19 tháng 12 2016

1)

ĐKXĐ: x\(\ne\)3

ta có :

\(\frac{x^2-6x+9}{2x-6}=\frac{\left(x-3\right)^2}{2\left(x-3\right)}=\frac{x-3}{2}\)

để biểu thức A có giá trị = 1

thì :\(\frac{x-3}{2}\)=1

=>x-3 =2

=>x=5(thoả mãn điều kiện xác định)

vậy để biểu thức A có giá trị = 1 thì x=5

30 tháng 12 2016

1)

\(A=\frac{x^2-6x+9}{2x-6}\)

A xác định

\(\Leftrightarrow2x-6\ne0\)

\(\Leftrightarrow2x\ne6\)

\(\Leftrightarrow x\ne3\)

Để A = 1

\(\Leftrightarrow x^2-6x+9=2x-6\)

\(\Leftrightarrow x^2-6x-2x=-6-9\)

\(\Leftrightarrow x^2-8x=-15\)

\(\Leftrightarrow x=3\) (loại vì không thỏa mãn ĐKXĐ)

3 tháng 9 2016

1) \(\frac{8xy\left(3x-1\right)^3}{12x^3\left(1-3x\right)}=-\frac{8xy\left(3x-1\right)^3}{12x^3\left(3x-1\right)}=-\frac{2y\left(3x-1\right)^2}{3x^2}\)

2) \(\frac{5x^3+5x}{x^4-1}=\frac{5x\left(x^2+1\right)}{\left(x^2+1\right)\left(x^2-1\right)}=\frac{5x}{x^2-1}\)

3) \(\frac{9-\left(x+5\right)^2}{x^2+4x+4}=\frac{\left(3-x-5\right)\left(3+x+5\right)}{\left(x+2\right)^2}=\frac{-\left(x+2\right)\left(x+8\right)}{\left(x+2\right)^2}=-\frac{x+8}{x+2}\)

3) \(\frac{32x-8x^2+2x^3}{x^3+64}=\frac{2x\left(16-4x+x^2\right)}{\left(x+4\right)\left(x^2-4x+16\right)}=\frac{2x}{x+4}\)

3 tháng 9 2016

Trùm Trường chỉ là đăng cho vui thui ak

6 tháng 4 2020

8,

b, (-x2+12x+4)/(x2+3x-4) = 12/(x+4) + 12/(3x-3)

(=) (-x2+12x+4)/(x-1)(x+4) -12(x-1)/(x-1)(x+4) - 4(x+4)/(x-1)(x+4) = 0

(=) -x2 +12x +4 -12x +12 -4x -16 = 0

(=) -x2 -4x = 0

(=) -x(x+4) = 0

(=) -x = 0 hoặc x +4 = 0

(=) x=0 hoặc x=-4

Vậy S={0;4}

Chúc bạn học tốt.

14 tháng 5 2019

casio fx 570vn

a: \(\Leftrightarrow x^2\left(x^2+x-12\right)=0\)

\(\Leftrightarrow x^2\left(x+4\right)\left(x-3\right)=0\)

hay \(x\in\left\{0;-4;3\right\}\)

d: \(\left(x^2+5x\right)^2-2\left(x^2+5x\right)-24=0\)

\(\Leftrightarrow\left(x^2+5x-6\right)\left(x^2+5x+4\right)=0\)

\(\Leftrightarrow\left(x+6\right)\left(x-1\right)\left(x+1\right)\left(x+4\right)=0\)

hay \(x\in\left\{-6;1;-1;-4\right\}\)

f: \(x\left(x+1\right)\left(x-1\right)\left(x+2\right)=24\)

\(\Leftrightarrow\left(x^2+x\right)\left(x^2+x-2\right)=24\)

\(\Leftrightarrow\left(x^2+x\right)^2-2\left(x^2+x\right)-24=0\)

\(\Leftrightarrow x^2+x-6=0\)

\(\Leftrightarrow\left(x+3\right)\left(x-2\right)=0\)

hay \(x\in\left\{-3;2\right\}\)