Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
đề dài v~
1.
a) \(f\left(x\right)=5x^2-2x+1\)
\(5f\left(x\right)=25x^2-10x+5\)
\(5f\left(x\right)=\left(25x^2-10x+1\right)+4\)
\(5f\left(x\right)=\left(5x-1\right)^2+4\)
Mà \(\left(5x-1\right)^2\ge0\)
\(\Rightarrow5f\left(x\right)\ge4\)
\(\Leftrightarrow f\left(x\right)\ge\frac{4}{5}\)
Dấu " = " xảy ra khi :
\(5x-1=0\Leftrightarrow x=\frac{1}{5}\)
Vậy ....
b) \(P\left(x\right)=3x^2+x+7\)
\(3P\left(x\right)=9x^2+3x+21\)
\(3P\left(x\right)=\left(9x^2+3x+\frac{1}{4}\right)+\frac{83}{4}\)
\(3P\left(x\right)=\left(3x+\frac{1}{2}\right)^2+\frac{83}{4}\)
Mà \(\left(3x+\frac{1}{2}\right)^2\ge0\)
\(\Rightarrow3P\left(x\right)\ge\frac{83}{4}\)
\(\Leftrightarrow P\left(x\right)\ge\frac{83}{12}\)
Dấu "=" xảy ra khi :
\(3x+\frac{1}{2}=0\Leftrightarrow x=-\frac{1}{6}\)
Vậy ...
c) \(Q\left(x\right)=5x^2-3x-3\)
\(5Q\left(x\right)=25x^2-15x-15\)
\(\Leftrightarrow5Q\left(x\right)=\left(25x^2-15x+\frac{9}{4}\right)-\frac{69}{4}\)
\(\Leftrightarrow5Q\left(x\right)=\left(5x-\frac{3}{2}\right)^2-\frac{69}{4}\)
Mà \(\left(5x-\frac{3}{2}\right)^2\ge0\)
\(\Rightarrow5Q\left(x\right)\ge\frac{-69}{4}\)
\(\Leftrightarrow Q\left(x\right)\ge-\frac{69}{20}\)
Dấu "=" xảy ra khi :
\(5x-\frac{3}{2}=0\Leftrightarrow x=0,3\)
Vậy ...
2.
a) \(f\left(x\right)=-3x^2+x-2\)
\(-3f\left(x\right)=9x^2-3x+6\)
\(-3f\left(x\right)=\left(9x^2-3x+\frac{1}{4}\right)+\frac{23}{4}\)
\(-3f\left(x\right)=\left(3x-\frac{1}{2}\right)^2+\frac{23}{4}\)
Mà \(\left(3x-\frac{1}{2}\right)^2\ge0\)
\(\Rightarrow-3f\left(x\right)\ge\frac{23}{4}\)
\(\Leftrightarrow f\left(x\right)\le\frac{23}{12}\)
Dấu "=" xảy ra khi :
\(3x-\frac{1}{2}=0\Leftrightarrow x=\frac{1}{6}\)
Vậy ...
b) \(P\left(x\right)=-x^2-7x+1\)
\(-P\left(x\right)=x^2+7x-1\)
\(-P\left(x\right)=\left(x^2+7x+\frac{49}{4}\right)-\frac{53}{4}\)
\(-P\left(x\right)=\left(x+\frac{7}{2}\right)^2-\frac{53}{4}\)
Mà \(\left(x+\frac{7}{2}\right)^2\ge0\)
\(\Rightarrow-P\left(x\right)\ge-\frac{53}{4}\)
\(\Leftrightarrow P\left(x\right)\le\frac{53}{4}\)
Dấu "=" xảy ra khi :
\(x+\frac{7}{2}=0\Leftrightarrow x=-\frac{7}{2}\)
Vậy ...
c) \(Q\left(x\right)=-2x^2+x-8\)
\(-2Q\left(x\right)=4x^2-2x+16\)
\(-2Q\left(x\right)=\left(4x^2-2x+\frac{1}{4}\right)+\frac{63}{4}\)
\(-2Q\left(x\right)=\left(2x-\frac{1}{2}\right)^2+\frac{63}{4}\)
Mà : \(\left(2x-\frac{1}{2}\right)^2\ge0\)
\(\Rightarrow-2Q\left(x\right)\ge\frac{63}{4}\)
\(\Leftrightarrow Q\left(x\right)\le-\frac{63}{8}\)
Dấu "=" xảy ra khi :
\(2x-\frac{1}{2}=0\Leftrightarrow x=\frac{1}{4}\)
Vậy ...
mk ghi đáp án, còn lại bạn tự biến đổi
a) \(2x^3-x^2+5x+3=\left(2x+1\right)\left(x^2-x+3\right)\)
b) \(x^3+5x^2+8x+4=\left(x+1\right)\left(x+2\right)^2\)
c) \(\left(x+2\right)\left(x+3\right)\left(x+4\right)\left(x+5\right)-24=\left(x+1\right)\left(x+6\right)\left(x^2+7x+16\right)\)
d) \(4x^4+1=\left(2x^2-2x+1\right)\left(2x^2+2x+1\right)\)
e) \(x^4-7x^3+14x^2-7x+1=\left(x^2-4x+1\right)\left(x^2-3x+1\right)\)
mk làm chi tiết theo yêu của của người hỏi đề:
a) \(2x^3-x^2+5x+3\)
\(=\left(2x^3-2x^2+6x\right)+\left(x^2-x+3\right)\)
\(=2x\left(x^2-x+3\right)+\left(x^2-x+3\right)\)
\(=\left(2x+1\right)\left(x^2-x+3\right)\)
b) \(x^3+5x^2+8x+4\)
\(=\left(x^3+4x^2+4x\right)+\left(x^2+4x+4\right)\)
\(=x\left(x^2+4x+4\right)+\left(x^2+4x+4\right)\)
\(=\left(x+1\right)\left(x^2+4x+4\right)\)
\(=\left(x+1\right)\left(x+2\right)^2\)
\(a,\dfrac{x^2-2x}{x^2-4}=\dfrac{x\left(x-2\right)}{\left(x-2\right)\left(x+2\right)}=\dfrac{x}{x+2}\)
b) \(\dfrac{x^2+5x+4}{x^2-1}=\dfrac{x^2+x+4x+4}{x^2-1}=\dfrac{\left(x+1\right)\left(x+4\right)}{\left(x-1\right)\left(x+1\right)}=\dfrac{x+4}{x-1}\)
c) \(\dfrac{x^4+4}{x\left(x^2+2\right)-2x^2-\left(x-1\right)^2-1}\)
\(=\dfrac{x^4+4x^2-4x^2+4}{x^3+2x-2x^2-x^2+2x-1-1}\)
\(=\dfrac{\left(x^2+2\right)^2-4x^2}{\left(x^3+2x-2x^2\right)-\left(x^2-2x+2\right)}\)
\(=\dfrac{\left(x^2+2-2x\right)\left(x^2+2+2x\right)}{x\left(x^2+2-2x\right)-\left(x^2+2-2x\right)}\)
\(=\dfrac{x^2+2+2x}{x-1}\)
Bài 2:
a) \(\left(\dfrac{2x+1}{2x-1}-\dfrac{2x-1}{2x+1}\right):\dfrac{4x}{10x-5}\)
\(=\dfrac{\left(2x+1\right)^2-\left(2x-1\right)^2}{\left(2x-1\right)\left(2x+1\right)}.\dfrac{5\left(2x-1\right)}{4x}\)
\(=\dfrac{8x}{\left(2x-1\right)\left(2x+1\right)}.\dfrac{5\left(2x-1\right)}{4x}\)
\(=\dfrac{10}{2x+1}\)
b) \(\left(\dfrac{1}{x^2+x}-\dfrac{2-x}{x+1}\right):\left(\dfrac{1}{x}+x-2\right)\)
\(=\dfrac{1-2x+x^2}{x\left(x+1\right)}:\dfrac{1+x^2-2x}{x}\)
\(=\dfrac{1}{x+1}\)
c) Trong ngoặc giữa hai phân số là dấu gì vậy ?
b) \(\left(3x^2-2x+1\right).\left(3x^2+2x+1\right)-\left(3x^2+1\right)^2\)=\(\left(3x^2\right)^2-\left(2x+1\right)^2-\left(3x^2+1\right)^2\)=\(\left(3x^2\right)^2-[\left(2x\right)^2+4x+1]-[\left(3x^2\right)^2+6x^2+1]\)=\(\left(2x\right)^2+4x+1+6x^2-1\)=\(4x^2+4x+6x^2\)=\(10x^2+4x\)
c)\(\left(x^2-5x+2\right)^2-2\left(x^2-5x+2\right)\left(5x-2\right)+\left(5x-2\right)^2\)=\([\left(x^2-5x+2\right)-\left(5x-2\right)]^2\)=\(x^2-5x+2-5x+2\)=\(x^2-10x+4\)=\(x^2-4x+2^2-6x\)=\(\left(x-2\right)^2-6x\)
Có 2 cách là dùng phép chia và xét giá trị riêng: mình sẽ dùng cách chia bạn mún làm cách kia thì bảo mình
Bài làm
Mà mình nghĩ là tìm m chứ bạn
a)
10x^2-7x+m 2x-3 5x 10x^2-15x - 8x+m +4 8x-12 - m+12
Để \(f\left(x\right)⋮2x-3\)\(\Leftrightarrow m+12=0\)
\(\Leftrightarrow m=-12\)
Vậy m=-12
\(A=\left(a^2+b^2-c^2\right)^2-\left(a^2-b^2+c^2\right)^2-4a^2b^2\)
\(=\left(a^2+b^2-c^2+a^2-b^2+c^2\right)\left(a^2+b^2-c^2-a^2+b^2-c^2\right)-4a^2b^2\)
\(=2a^2.2b^2-4a^2b^2=0\)
\(C=\left(2-6x\right)^2+\left(2-5x\right)^2+2\left(6x-2\right)\left(2-5x\right)\)
\(=\left[\left(2-6x\right)+\left(2-5x\right)\right]^2\)
\(=\left[4-11x\right]^2\)
\(=16-88x+121x^2\)
chúc bn học tốt
a: \(A=2x^2-2xy-y^2+2xy=2x^2-y^2\)
\(=2\cdot\dfrac{4}{9}-\dfrac{1}{9}=\dfrac{7}{9}\)
b: \(B=5x^2-20xy-4y^2+20xy=5x^2-4y^2\)
\(=5\cdot\dfrac{1}{25}-4\cdot\dfrac{1}{4}\)
=1/5-1=-4/5
c \(C=x^3+6x^2+12x+8=\left(x+2\right)^3=\left(-9\right)^3=-729\)
d: \(D=20x^3-10x^2+5x-20x^2+10x+4\)
\(=20x^3-30x^2+15x+4\)
\(=20\cdot5^3-30\cdot5^2+15\cdot2+4=1784\)
x2-5x+4=(x+1)2+b(x+1)+c
<=>x2-5x+4=x2+2x+1+bx+b+c
<=>x2-5x+4=x2+(2+b)x+(b+c+1)
=>2+b=-5 và b+c+1=4 (1)
*2+b=-5
b=-7
thay b=-7 vào (1) ta được:
-7+c+1=4
c-6=4
c=10
vậy b=-7;c=10