![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
Ta có: \(\sin\alpha+\cos\alpha=\sqrt{2}\Rightarrow\left(\sin\alpha+\cos\alpha\right)^2=2\Rightarrow\sin^2\alpha+\cos^2\alpha+2.\sin\alpha.\cos\alpha=2\)
Mà \(\sin^2\alpha+\cos^2\alpha=1\)nên \(2.\sin\alpha.\cos\alpha=1\Rightarrow\sin\alpha.\cos\alpha=\frac{1}{2}\)
Đặt \(\sin\alpha=x,\cos\alpha=y\)thì ta có hệ phương trình \(\hept{\begin{cases}x+y=\sqrt{2}\\xy=\frac{1}{2}\end{cases}}\)
x, y là hai nghiệm của phương trình \(t^2-\sqrt{2}t+\frac{1}{2}=0\Leftrightarrow\left(t-\frac{\sqrt{2}}{2}\right)^2=0\Leftrightarrow t=\frac{\sqrt{2}}{2}\)
Do đó \(\sin\alpha=\cos\alpha=\frac{\sqrt{2}}{2}\)
Xét ∆ABC vuông cân tại A có AB = AC = a thì \(BC=a\sqrt{2}\)
Ta có: \(\frac{\sqrt{2}}{2}=\frac{a}{a\sqrt{2}}=\frac{AC}{BC}=\sin\widehat{B}=\sin45^0\)
Vậy số đo góc \(\alpha\)là 450
![](https://rs.olm.vn/images/avt/0.png?1311)
Bài 2:
\(\cos\alpha=\sqrt{1-\dfrac{4}{9}}=\dfrac{\sqrt{5}}{3}\)
\(\tan\alpha=\dfrac{2}{\sqrt{5}}=\dfrac{2\sqrt{5}}{5}\)
\(\cot\alpha=\dfrac{\sqrt{5}}{2}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Từ B kẻ đường cao BH (H thuộc AC)
\(S_{ABC}=\frac{1}{2}AC.BH\) (1)
Xét tam giác vuông ABH có
\(sinA=\frac{BH}{AB}\Rightarrow BH=AB.sinA\) (2)
Thay (2) vào (1) => \(S_{ABC}=\frac{1}{2}AB.AC.sinA\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Câu 1:
\(\cos a=\sqrt{1-\left(\dfrac{1}{4}\right)^2}=\dfrac{\sqrt{15}}{4}\)
\(A=\sin^2a+3\cos^2a-1=\dfrac{1}{16}+3\cdot\dfrac{15}{16}-1=\dfrac{15}{8}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(\sin^2\widehat{A}+\cos^2\widehat{A}=1\Leftrightarrow\cos^2\widehat{A}=1-\left(\dfrac{3}{5}\right)^2=1-\dfrac{9}{25}=\dfrac{16}{25}\\ \Leftrightarrow\cos\widehat{A}=\dfrac{4}{5}\\ \tan\widehat{A}=\dfrac{\sin\widehat{A}}{\cos\widehat{A}}=\dfrac{3}{4}\\ \Rightarrow\cot\widehat{A}=\dfrac{1}{\tan\widehat{A}}=\dfrac{4}{3}\)
300