\(f\left(x\right)=\left(x^2+x-1\right)^{10}+\left(x^2-x+1\right)^{10}\) ...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 2 2017

Ta có \(F\left(x\right)=g\left(x\right).\left(x+1\right)+4\)

Giả sử \(g\left(x\right)=r\left(x\right).\left(x^2+1\right)+ax+b\)

Suy ra \(F\left(x\right)=r\left(x\right).\left(x+1\right)\left(x^2+1\right)+\left(ax+b\right)\left(x+1\right)+4\)

Đa thức dư là \(h\left(x\right)=\left(ax+b\right)\left(x+1\right)+4\) ta có \(h\left(x\right)=ax^2+\left(a+b\right)x+\left(b+4\right)\)

Theo giả thiết \(h\left(x\right)\) chia \(\left(x^2+1\right)\) dư \(2x+3\)

\(h\left(x\right)=a\left(x^2+1\right)+\left(a+b\right)x+\left(b-a+4\right)\)

\(\Rightarrow\)\(\hept{\begin{cases}a+b=2\\b-a+4=3\end{cases}}\)\(\Leftrightarrow\)\(\hept{\begin{cases}a=\frac{3}{2}\\b=\frac{1}{2}\end{cases}}\)

Vậy đa thức dư là \(h\left(x\right)=\left(\frac{3}{2}x+\frac{1}{2}\right)\left(x+1\right)+4\)

9 tháng 2 2017

Ta có f(x) chia cho x + 1 dư 4 nên theo bê-du ta có: f(-1) = 4 (1)

Khi chi f(x) cho (x + 1)(x2 + 1) thì phần dư phải là đa thức bậc 2 hay

f(x) = (x + 1)(x2 + 1)Q(x) + ax2 + bx + c

= (x + 1)(x2 + 1)Q(x) + a(x2 + 1)+ bx + c - a

= (x2 + 1)[(x + 1)Q(x) + a] + bx + c - a (2)

Mà f(x) chia cho x2 + 1 dư 2x + 3 (3)

Từ (1), (2), (3) ta suy ra hệ

\(\hept{\begin{cases}b=2\\c-a=3\\a-b+c=4\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}b=2\\a=\frac{3}{2}\\c=\frac{9}{2}\end{cases}}\)

Vậy đa thức dư cần tìm là: \(\frac{3}{2}x^2+2x+\frac{9}{2}\)

11 tháng 3 2021

Tú mà không làm được câu này á :))

( x - 6 )( x - 7 )( x - 8 )( x - 9 ) - 8

= [ ( x - 6 )( x - 9 ) ][ ( x - 7 )( x - 8 ) ] - 8

= ( x2 - 15x + 54 )( x2 - 15x + 56 ) - 8 (*)

Đặt t = x2 - 15x + 54

(*) <=> t( t + 2 ) - 8

= t2 + 2t - 8

= ( t - 2 )( t + 4 )

= ( x2 - 15x + 52 )( x2 - 15x + 58 )

=> [ ( x - 6 )( x - 7 )( x - 8 )( x - 9 ) - 8 ] : ( x2 - 15x + 100 )

= ( x2 - 15x + 52 )( x2 - 15x + 58 ) : ( x2 - 15x + 100 )

Đặt y = x2 - 15x + 100

Ta có được phép chia ( y - 48 )( y - 42 ) : y

= y2 - 90y + 2016 : y

= [ ( x2 - 15x + 100 )2 - 90( x2 - 15x + 100 ) + 2016 ] : ( x2 - 15x + 100 )

Đến đây thì quá dễ rồi :)) dư 2016 nhá

11 tháng 3 2021

Đề này học kì 1 huyện tớ có.

10 tháng 10 2016

Cách 1. Sử dụng định lí Bezout : 

Vì f(x) chia hết cho g(x) nên ta có thể biểu diễn thành : \(f\left(x\right)=g\left(x\right).g'\left(x\right)\) với g'(x) là đa thức thương

hay \(f\left(x\right)=\left(x-1\right)\left(x-2\right).g'\left(x\right)\)

Khi đó , theo định lí Bezout ta có \(\hept{\begin{cases}f\left(1\right)=a+b=0\\f\left(2\right)=7+4a+2b=0\end{cases}\Leftrightarrow}\hept{\begin{cases}a+b=0\\4a+2b=-7\end{cases}\Leftrightarrow}\hept{\begin{cases}a=-\frac{7}{2}\\b=\frac{7}{2}\end{cases}}\)

Cách 2. Sử dụng HỆ SỐ BẤT ĐỊNH

Giả sử \(f\left(x\right)=x^3+ax^2+bx-1=\left(x^2-3x+2\right).\left(x+c\right)\)(Vì bậc cao nhất của f(x) là 3)

\(\Rightarrow x^3+ax^2+bx-1=x^3+x^2\left(c-3\right)+x\left(2-3c\right)+2c\)

Theo hệ số bất định thì \(\hept{\begin{cases}2c=-1\\2-3c=b\\c-3=a\end{cases}}\Leftrightarrow\hept{\begin{cases}c=-\frac{1}{2}\\b=\frac{7}{2}\\a=-\frac{7}{2}\end{cases}}\)

10 tháng 10 2016

Lại lỗi dấu ngoặc nhọn =.="

17 tháng 3 2017

4036

17 tháng 3 2017

dam cong tian Cách làm bạn