\(\cup\) N...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Câu 1 : Cho A = [-2;3) và B = ( m-1;m+1) . Ta có A hợp B =∅ khi và chỉ khi m thuộc : A .[-1;2) B. (- \(\infty\); 3)\(\cup\) [ 4;+\(\infty\) ) C. (-\(\infty\);-3] D . [-3;4) Câu 2 : Khẳng định nào sai ? A .( A \(\cup\) B) \(\cap\) C=A\(\cup\)(B \(\cap\) C) B .(A\(\cap\)B) ⊂ A C. A=(A\(\cap\)B) \(\cup\) (A\ B) D.(B\A)⊂B Câu 3 : Trong các mệnh đề sau đây...
Đọc tiếp

Câu 1 : Cho A = [-2;3) và B = ( m-1;m+1) . Ta có A hợp B =∅ khi và chỉ khi m thuộc :

A .[-1;2) B. (- \(\infty\); 3)\(\cup\) [ 4;+\(\infty\) ) C. (-\(\infty\);-3] D . [-3;4)

Câu 2 : Khẳng định nào sai ?

A .( A \(\cup\) B) \(\cap\) C=A\(\cup\)(B \(\cap\) C) B .(A\(\cap\)B) ⊂ A C. A=(A\(\cap\)B) \(\cup\) (A\ B) D.(B\A)⊂B

Câu 3 : Trong các mệnh đề sau đây mệnh đề nào sai ?

A . Hình bình hành có hai đường chéo bằng nhau là hình vuông

B . Tam giác cân có một góc bằng 60 độ là tam giác đều

C .∃x ∈ Q : x2 \(\le\)0

D .∃x ∈ Q : x2\(\le\) 5

Câu 4: Trong các mệnh đề sau mệnh đề nào có mệnh đề đảo đúng ?

A . Nếu hai tam giác bằng nhau thì có diện tích bằng nhau

B . Nếu một số tận cùng bằng 0 thì số đó chia hết cho 5

C .Nếu a chia hết cho 3 thì a chia hết cho 9

D .Nếu a và b chia hết cho c thì a+b chia hết cho c

Câu 5 : Cho hai tập hợp A ={ x ∈ R | (2x - x2)( 2x2 - 3x - 2) =0 } , B = {n ∈ N | 3 < n2 < 30} , chọn mệnh đề đúng

A . A\(\cap B=\left\{2\right\}\) B.A\(\cap B=\left\{3\right\}\) C. A\(\cap B=\left\{5;4\right\}\) D. A\(\cap B=\left\{2;4\right\}\)

1

Câu 1: B

Câu 2: C

Câu 3: A

Câu 4: D

Câu 5: A

29 tháng 8 2017

Akai Haruma

10 tháng 11 2017

mọi người giúp em vs

23 tháng 8 2018

Theo em biết thì n5 - n = n(n4 - 1) = n(n2 - 1)(n2 + 1) = (n - 1)n(n + 1)(n2 - 4) + 5(n - 1)n(n + 1) = (n - 2)(n - 1)n(n + 1)(n + 2) + 5(n - 1)n(n + 1)

Phải không ạ ?

23 tháng 8 2018

Với lại, nếu là bài kiểm tra bình thường (dành cho mọi học sinh) thì tính chất một số chính phương khi chia cho 5 chỉ có số dư là -1, 0, 1 hình như phải chứng minh đấy ạ. Nhân đây chứng minh cho bạn ra đề kẻo bạn không hiệu :v

Ta xét 3 trường hợp như sau:

+) TH1: \(n\equiv0\left(mod5\right)\Rightarrow n^2\equiv0^2\left(mod5\right)\)

=> n2 \(⋮\) 5

+) TH2:

\(n\equiv\pm1\left(mod5\right)\Rightarrow n^2\equiv\left(\pm1\right)^2\left(mod5\right)\Rightarrow n^2\equiv1\left(mod5\right)\)

=> n2 chia 5 dư 1

+) TH3:

\(n\equiv\pm2\left(mod5\right)\Rightarrow n^2\equiv\left(\pm2\right)^2\left(mod5\right)\Rightarrow n^2\equiv4\equiv-1\left(mod5\right)\)

=> n2 chia 5 dư -1

29 tháng 11 2019

a) \(2^n>2n+1\) (1) 

Với n=3 thì (1) <=> \(2^3>2.3+1\) (đúng) 

Giả sử (1) đúng đến n=k => \(2^k-2k-1>0\)

Ta có: \(2^{k+1}-2\left(k+1\right)-1=2\left(2^k-2k-1\right)+2k-1>0\) (với \(k>3\)

=> \(2^{k+1}>2\left(k+1\right)+1\) (1) đúng đến n=k+1 

Theo quy nạp thì (1) đúng 

b) \(2^n\ge n^2\) (2) 

Với n=4 thì (2) <=> \(2^4\ge4^2\) (đúng) 

Giả sử (2) đúng đến n=k => \(2^k-k^2\ge0\)

Ta có: \(2^{k+1}-\left(k+1\right)^2=2\left(2^k-k^2\right)+\left(k-1\right)^2\ge0\)

=> \(2^{k+1}\ge\left(k+1\right)^2\) => (2) đúng đến n=k+1 

Theo nguyên lí quy nạp thì (2) đúng