Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có: \(\left(x-3\right)^3\)
\(=x^3-3\cdot x^2\cdot3+3\cdot x\cdot3^2-3^3\)
\(=x^3-9x^2+27x^2-27\)
b) Ta có: \(\left(2x-3\right)^3\)
\(=\left(2x\right)^3-3\cdot\left(2x\right)^2\cdot3+3\cdot2x\cdot3^2-3^3\)
\(=8x^3-36x^2+54x-27\)
c) Ta có: \(\left(x-\frac{1}{2}\right)^3\)
\(=x^3-3\cdot x^2\cdot\frac{1}{2}+3\cdot x\cdot\left(\frac{1}{2}\right)^2-\left(\frac{1}{2}\right)^3\)
\(=x^3-\frac{3}{2}x^2+\frac{3}{4}x-\frac{1}{8}\)
d) Ta có: \(\left(x^2-2\right)^3\)
\(=\left(x^2\right)^3-3\cdot\left(x^2\right)^2\cdot2+3\cdot x^2\cdot2^2-2^3\)
\(=x^6-6x^4+12x^2-8\)
e) Ta có: \(\left(2x-3y\right)^3\)
\(=\left(2x\right)^3-2\cdot\left(2x\right)^2\cdot3y+2\cdot2x\cdot\left(3y\right)^2-\left(3y\right)^3\)
\(=8x^3-24x^2y+36xy^2-27y^3\)
f) Ta có: \(\left(\frac{1}{2}x-y^2\right)^3\)
\(=\left(\frac{1}{2}x\right)^3-3\cdot\left(\frac{1}{2}x\right)^2\cdot y^2+3\cdot\frac{1}{2}x\cdot\left(y^2\right)^2-\left(y^2\right)^3\)
\(=\frac{1}{8}x^3-\frac{3}{4}x^2y^2+\frac{3}{2}xy^4-y^6\)
a) Ta có: \(\left(x+1\right)^3\)
\(=x^3+3\cdot x^2\cdot1+3\cdot x\cdot1^2+1^3\)
\(=x^3+3x^2+3x+1\)
b) Ta có: \(\left(2x+3\right)^3\)
\(=\left(2x\right)^3+3\cdot\left(2x\right)^2\cdot3+3\cdot2x\cdot3^2+3^3\)
\(=8x^3+3\cdot4x^2\cdot3+27\cdot2x+27\)
\(=8x^3+36x^2+54x+27\)
c) Ta có: \(\left(x+\frac{1}{2}\right)^3\)
\(=x^3+2\cdot x^2\cdot\frac{1}{2}+2\cdot x\cdot\left(\frac{1}{2}\right)^2+\left(\frac{1}{2}\right)^3\)
\(=x^3+x^2+\frac{1}{2}x+\frac{1}{8}\)
d) Ta có: \(\left(x^2+2\right)^3\)
\(=\left(x^2\right)^3+3\cdot\left(x^2\right)^2\cdot2+3\cdot x^2\cdot2^2+2^3\)
\(=x^6+6x^4+12x^2+8\)
e) Ta có: \(\left(2x+3y\right)^3\)
\(=\left(2x\right)^3+3\cdot\left(2x\right)^2\cdot3y+3\cdot2x\cdot\left(3y\right)^2+\left(3y\right)^3\)
\(=8x^3+36x^2y+54xy^2+27y^3\)
f) Ta có: \(\left(\frac{1}{2}x+y^2\right)^3\)
\(=\left(\frac{1}{2}x\right)^3+3\cdot\left(\frac{1}{2}x\right)^2\cdot y^2+3\cdot\frac{1}{2}x\cdot\left(y^2\right)^2+\left(y^2\right)^3\)
\(=\frac{1}{8}x^3+\frac{3}{4}x^2y^2+\frac{3}{2}xy^4+y^6\)
1) \(\left(\frac{1}{4}+k\right)^2=\frac{1}{16}+\frac{1}{2}k+k^2\)
2) \(\left(2x^2y+\frac{1}{2}xy^2\right)^2=4x^4y^2+2x^3y^3+\frac{1}{4}x^2y^4\) (hẳn đề là như thế này)
3) \(\left(x+\frac{1}{2}y\right)^2=x^2+xy+\frac{1}{4}y^2\)
a) \(\left(\frac{1}{3}u+3v\right)^2=\frac{1}{9}u^2+2uv+9v^2\)
b) \(\left(\frac{1}{2}x^2-6x\right)^2=\frac{1}{4}x^4-6x^3+36x^2\)
c) \(\left(-\frac{1}{2}a+b\right)^2=\frac{1}{4}a^2-ab+b^2\)
d) \(\left(-\frac{4}{3}a-\frac{1}{3}b\right)^2=\frac{16}{9}a^2+\frac{8}{9}ab+\frac{1}{9}b^2\)
e) \(\left(\frac{2}{3}x-\frac{3}{2}y\right)\left(\frac{2}{3}x+\frac{3}{2}y\right)=\frac{4}{9}x^2-\frac{9}{4}y^2\)
a) \(\left(\frac{1}{3}u+3v\right)^2=\frac{1}{9}u^2+2uv+9v^2\)
b) \(\left(\frac{1}{2}x^2-6x\right)^2=\frac{1}{4}x^4-6x^3+36x^2\)
c) \(\left(-\frac{1}{2}a+b\right)^2=\frac{1}{4}a^2-ab+b^2\)
d) \(\left(-\frac{4}{3}a-\frac{1}{3}b\right)^2=\frac{16}{9}a^2+\frac{8}{9}ab+\frac{1}{9}b^2\)
e) \(\left(\frac{2}{3}x-\frac{3}{2}y\right)\left(\frac{2}{3}x+\frac{3}{2}y\right)=\left(\frac{2}{3}x\right)^2-\left(\frac{3}{2}y\right)^2=\frac{4}{9}x^2-\frac{9}{4}y^2\)
a,\(\left(2x-1\right)\left(4x^2+2x+1\right)=\left(2x-1\right)\left[\left(2x\right)^2+2x.1+1^2\right]\)
\(=\left(2x\right)^3-1=8x^3-1\)
b,\(\left(x+2y+z\right)\left(x+2y-z\right)=\left(x+2y\right)^2-z^2\)
\(=x^2+2.x.2y+\left(2y\right)^2-z^2=x^2+4xy+4y^2-z^2\)
`a)(2x-1)(4x^2+2x+1)`
`=(2x-1)[(2x)^2+2x.1+1^2]`
`=(2x)^3-1^3`
`=8x^3-1`
Áp dụng HĐT:`A^3-B^3=(A-B)(A^2+AB+B^2)`
`b)(x+2y+z)(x+2y-z)`
`=[(x+2y)+z][(x+2y)-z]`
`=(x+2y)^2-z^2`
`=x^2+2.x.2y+(2y)^2-z^2`
`=x^2+4xy+4y^2-z^2`
Áp dụng HĐT:`A^2-B^2=(A+B)(A-B)`
`(A+B)^2=A^2+2AB+B^2`
Giải:
a) \(\left(2x+y+3\right)^2\)
\(=\left(2x+y\right)^2+2.3\left(2x+y\right)+3^2\)
\(=\left(2x\right)^2+2.2x.y+y^2+2.3\left(2x+y\right)+3^2\)
\(=4x^2+4xy+y^2+12x+6y+9\)
Vậy ...
b) \(\left(x-2y+1\right)^2\)
\(=\left(x-2y\right)^2+2\left(x-2y\right)+1^2\)
\(=x^2-2.x.2y+\left(2y\right)^2+2x-4y+1^2\)
\(=x^2-4xy+4y^2+2x-4y+1\)
Vậy ...
c) \(\left(x^2-2xy^2-3\right)^2\)
\(=\left(x^2-2xy^2\right)^2+2.3.\left(x^2-2xy^2\right)-3^2\)
\(=\left(x^2\right)^2-2.x^2.2xy^2+\left(2xy^2\right)^2+2.3.\left(x^2-2xy^2\right)-3^2\)
\(=x^4-4x^3y^2+4x^2y^4+6x^2-12xy^2-9\)
Vậy ...
\(a,\left(2x+y+3\right)^2=4x^2+y^2+9+4xy+12x+6y\)
\(b,\left(x-2y+1\right)^2=x^2+4y^2+1-4xy+2x-4y\)
\(c,\left(x^2-2xy^2-3\right)^2=x^4+2x^2y^4+9-4x^3y^2-6x^2+12xy^2\)
a) \(\left(2x-1\right)\left(4x^2+2x+1\right)=8x^3-1\)
b) \(\left(x+2y+z\right)\left(x+2y-z\right)=\left(x+2y\right)^2-z^2\)
a\(=\frac{1}{4}x^2+2.\frac{1}{2}x.1+1=\frac{1}{4}x^2+x+1\)
b\(=4x^2-2.2x.\frac{1}{3}+\frac{1}{9}=4x^2-\frac{4}{3}x+\frac{1}{9}\)
Bạn học tốt nha >>>>>>
nha
a/\(\left(\frac{1}{2}x+1\right)^2=\frac{1}{4}x^2+x+1^2\)
b/\(\left(2x-\frac{1}{3}\right)^3=8x^3-2x+\frac{2}{3}x-\frac{1}{27}\)
k nha