K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Ta có: \(x^4+8x\\ =x\left(x^3+8\right)\\ =x\left(x+2\right)\left(x^2-2x+4\right)\)

Vậy: Chọn D

3 tháng 9 2018

\(x^2-2x-4y^2-4y\)

\(=\left(x^2-4y^2\right)-\left(2x+4y\right)\)

\(=\left(x-2y\right)\left(x+2y\right)-2\left(x+2y\right)\)

\(=\left(x+2y\right)\left(x-2y-2\right)\)

1 tháng 10 2020

\begin{array}{l} a){\left( {ab - 1} \right)^2} + {\left( {a + b} \right)^2}\\  = {a^2}{b^2} - 2ab + 1 + {a^2} + 2ab + {b^2}\\  = {a^2}{b^2} + 1 + {a^2} + {b^2}\\  = {a^2}\left( {{b^2} + 1} \right) + \left( {{b^2} + 1} \right)\\  = \left( {{a^2} + 1} \right)\left( {{b^2} + 1} \right)\\ c){x^3} - 4{x^2} + 12x - 27\\  = {x^3} - 27 + \left( { - 4{x^2} + 12x} \right)\\  = \left( {x - 3} \right)\left( {{x^2} + 3x + 9} \right) - 4x\left( {x - 3} \right)\\  = \left( {x - 3} \right)\left( {{x^2} + 3x + 9 - 4x} \right)\\  = \left( {x - 3} \right)\left( {{x^2} - x + 9} \right)\\ b){x^3} + 2{x^2} + 2x + 1\\  = {x^3} + 2{x^2} + x + x + 1\\  = x\left( {{x^2} + 2x + 1} \right) + \left( {x + 1} \right)\\  = x{\left( {x + 1} \right)^2} + \left( {x + 1} \right)\\  = \left( {x + 1} \right)\left( {x\left( {x + 1} \right) + 1} \right)\\  = \left( {x + 1} \right)\left( {{x^2} + x + 1} \right)\\ d){x^4} - 2{x^3} + 2x - 1\\  = {x^4} - 2{x^3} + {x^2} - {x^2} + 2x - 1\\  = {x^2}\left( {{x^2} - 2x + 1} \right) - \left( {{x^2} - 2x + 1} \right)\\  = \left( {{x^2} - 2x + 1} \right)\left( {{x^2} - 1} \right)\\  = {\left( {x - 1} \right)^2}\left( {x - 1} \right)\left( {x + 1} \right)\\  = {\left( {x - 1} \right)^3}\left( {x + 1} \right)\\ e){x^4} + 2{x^3} + 2{x^2} + 2x + 1\\  = {x^4} + 2{x^3} + {x^2} + {x^2} + 2x + 1\\  = {x^2}\left( {{x^2} + 2x + 1} \right) + \left( {{x^2} + 2x + 1} \right)\\  = \left( {{x^2} + 2x + 1} \right)\left( {{x^2} + 1} \right)\\  = {\left( {x + 1} \right)^2}\left( {{x^2} + 1} \right) \end{array}

I ) Trắc nghiệm:Câu 1: Kết quả của phép tính (2x-3)(2x+3) bằng :a) \(4x^2+9\)b) \(4x^2-9\)c)\(9x^2+4\)d) \(9x^2-4\)Câu 2:Kết quả phân tích đa thức \(-2x+1+x^2\)thành nhân tử là:a) \(\left(x-1\right)^2\)b) \(\left(x+1^2\right)\)c) \(-\left(x+1\right)^2\)d) \(-\left(x-1\right)^2\)Câu 3: Kết quả phép tính: \(20x^2y^6z^3:5xy^2z^2\)là:a) \(4xy^3z^2\)b) \(4xy^3z^3\)c) \(4xy^4z\)d) \(4x^2y^4z\)Câu 4: Phép chia đa thức \(8x^3-1\) cho đa...
Đọc tiếp

I ) Trắc nghiệm:

Câu 1: Kết quả của phép tính (2x-3)(2x+3) bằng :

a) \(4x^2+9\)

b) \(4x^2-9\)

c)\(9x^2+4\)

d) \(9x^2-4\)

Câu 2:Kết quả phân tích đa thức \(-2x+1+x^2\)thành nhân tử là:

a) \(\left(x-1\right)^2\)

b) \(\left(x+1^2\right)\)

c) \(-\left(x+1\right)^2\)

d) \(-\left(x-1\right)^2\)

Câu 3: Kết quả phép tính: \(20x^2y^6z^3:5xy^2z^2\)là:

a) \(4xy^3z^2\)

b) \(4xy^3z^3\)

c) \(4xy^4z\)

d) \(4x^2y^4z\)

Câu 4: Phép chia đa thức \(8x^3-1\) cho đa thức \(4x^2+2x+1\)có thương là:

a) 2x + 1          b) -2x + 1       c)-2x - 1    d) 2x - 1

Câu 5: Mẫu thức chung của hai phân thức \(\frac{4}{x^2-9}\)và \(\frac{1-x}{x^2+3x}\)là:

a) \(\left(x-9\right)\left(x^2+3x\right)\)

b) \(x\left(x-9\right)\)

c) \(x\left(x+3\right)\left(x-3\right)\)

d) \(\left(x+3\right)\left(x-9\right)\)

Câu 6: Tổng hai phân thức: \(\frac{2x-1}{2x}\)\(\frac{4x+1}{2x}\)là:

a) \(1\)

b) \(\frac{6x-2}{2x}\)

c) \(3\)

d) \(\frac{6x+2}{2x}\)

Câu 7: Kết quả phép chia \(\frac{6x-3}{2x^3y^2}\) : \(\frac{12x-6}{4x^2y^3}\) là:

a) \(\frac{9\left(2x-1\right)^2}{4x^5y^5}\)

b) \(\frac{y}{x}\)

c) \(\frac{-y}{x}\)

d) \(\frac{x}{y}\)

Câu 8: Cho hình vẽ, biết AB//CD và AB= 4,5 cm ; DC= 6,5 cm . Độ dài EF là :

a) 4,5 cm

b) 5 cm

c) 5,5 cm

d) 6,5 cm

 

 

1
11 tháng 12 2018

\(\left(2x-3\right).\left(2x+3\right)=4x^2-9\)

\(20x^2y^6z^3:5xy^2z^2=4xy^4z\)

\(\frac{8x^3-1}{4x^2+2x+1}=\frac{\left(4x^2+2x+1\right).\left(2x-1\right)}{4x^2+2x+1}=2x-1\)

\(\frac{2x-1}{2x}+\frac{4x+1}{2x}=\frac{2x-1+4x+1}{2x}=3\)

26 tháng 9 2018

\(x^2-\text{5}xy-14y^2\)

\(=x^2+2xy-7xy-14y^2\)

\(=x\left(x+2y\right)-7y\left(x+2y\right)\)

\(=\left(x+2y\right)\left(x-7y\right)\)

26 tháng 9 2018

a) \(x^2-5xy-14y^2=x^2-7xy+2xy-14y^2\)

\(=\left(x-7y\right)\left(x+2y\right)\)

b) \(x^2-5x+6=x^2-2x-3x+6=\left(x-2\right)\left(x-3\right)\)

c) \(x^4+4=x^4+4x^2+4-\left(2x\right)^2\)

\(=\left(x^2+2\right)^2-\left(2x\right)^2\)

\(=\left(x^2-2x+2\right)\left(x^2+2x+2\right)\)

d) 

20 tháng 4 2017

a) x2 – 4x + 3 = x2 – x - 3x + 3

= x(x - 1) - 3(x - 1) = (x -1)(x - 3)

b) x2 + 5x + 4 = x2 + 4x + x + 4

= x(x + 4) + (x + 4)

= (x + 4)(x + 1)

c) x2 – x – 6 = x2 +2x – 3x – 6

= x(x + 2) - 3(x + 2)

= (x + 2)(x - 3)

d) x4+ 4 = x4 + 4x2 + 4 – 4x2

= (x2 + 2)2 – (2x)2

= (x2 + 2 – 2x)(x2 + 2 + 2x)


20 tháng 4 2017

Bài giải:

a) x2 – 4x + 3 = x2 – x - 3x + 3

= x(x - 1) - 3(x - 1) = (x -1)(x - 3)

b) x2 + 5x + 4 = x2 + 4x + x + 4

= x(x + 4) + (x + 4)

= (x + 4)(x + 1)

c) x2 – x – 6 = x2 +2x – 3x – 6

= x(x + 2) - 3(x + 2)

= (x + 2)(x - 3)

d) x4+ 4 = x4 + 4x2 + 4 – 4x2

= (x2 + 2)2 – (2x)2

= (x2 + 2 – 2x)(x2 + 2 + 2x)

18 tháng 9 2018

\(x^8+x^4+1\)

\(=\left(x^8+2x^4+1\right)-x^4\)

\(=\left(x^4+1\right)^2-x^4\)

\(=\left(x^4+1-x^2\right)\left(x^4+1+x^2\right)\)

\(=\left(x^4-x^2+1\right)\left(x^4+2x^2-x^2+1\right)\)

\(=\left(x^4-x^2+1\right)[\left(x^2+1\right)^2-x^2]\)

\(=\left(x^4-x^2+1\right)\left(x^2+1-x\right)\left(x^2+1+x\right)\)

12 tháng 9 2018

 \(A=x^4-x^2+16\)

    \(=x^4+8x^2+16-9x^2\)

    \(=\left(x^2+4\right)^2-\left(3x\right)^2\)

    \(=\left(x^2-3x+4\right)\left(x^2+3x+4\right)\)

\(B=x^4+6x^2+25\)

   \(=x^4+10x^2+25-4x^2\)

   \(=\left(x^2+5\right)-\left(2x\right)^2\)

   \(=\left(x^2-2x+5\right)\left(x^2+2x+5\right)\)

\(C=4x^4-16-4x^2-16x\)

    \(=4x^2\left(x^2-1\right)-16\left(x+1\right)\)

    \(=4x^2\left(x-1\right)\left(x+1\right)-16\left(x+1\right)\)

    \(=\left(4x^2-4x\right)\left(x+1\right)-16\left(x+1\right)\)

     \(=\left(x+1\right)\left(4x^2-4x-16\right)\)

\(D=b^2-7bc+12c^2\)

    \(=b^2-3bc-4bc+12c^2\)

    \(=b\left(b-3c\right)-4c\left(b-3c\right)\)

     \(=\left(b-3c\right)\left(b-4c\right)\)

Chúc bạn học tốt.

15 tháng 10 2019

b)=4a2-8ab+4b2-a2-2ab-b2

=3a2-6ab+3b2

=3(a2-2ab+b2)

=3(a-b)2

15 tháng 10 2019

c, 4 - y^2 - x^2 + 2xy

= 4-(x^2 - 2xy + y^2) 

= 4-(x - y)^2 

= (2 - x - y)(2 + x - y)

d, x^2 - 2x - 80

= x^2 + 8x - 10x - 80

= x(x + 8) - 10(x + 8)

= (x - 10(x + 8)