\(\left(8x^3-1\right):\left(1-2x\right)\) là :

(A) 

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

I ) Trắc nghiệm:Câu 1: Kết quả của phép tính (2x-3)(2x+3) bằng :a) \(4x^2+9\)b) \(4x^2-9\)c)\(9x^2+4\)d) \(9x^2-4\)Câu 2:Kết quả phân tích đa thức \(-2x+1+x^2\)thành nhân tử là:a) \(\left(x-1\right)^2\)b) \(\left(x+1^2\right)\)c) \(-\left(x+1\right)^2\)d) \(-\left(x-1\right)^2\)Câu 3: Kết quả phép tính: \(20x^2y^6z^3:5xy^2z^2\)là:a) \(4xy^3z^2\)b) \(4xy^3z^3\)c) \(4xy^4z\)d) \(4x^2y^4z\)Câu 4: Phép chia đa thức \(8x^3-1\) cho đa...
Đọc tiếp

I ) Trắc nghiệm:

Câu 1: Kết quả của phép tính (2x-3)(2x+3) bằng :

a) \(4x^2+9\)

b) \(4x^2-9\)

c)\(9x^2+4\)

d) \(9x^2-4\)

Câu 2:Kết quả phân tích đa thức \(-2x+1+x^2\)thành nhân tử là:

a) \(\left(x-1\right)^2\)

b) \(\left(x+1^2\right)\)

c) \(-\left(x+1\right)^2\)

d) \(-\left(x-1\right)^2\)

Câu 3: Kết quả phép tính: \(20x^2y^6z^3:5xy^2z^2\)là:

a) \(4xy^3z^2\)

b) \(4xy^3z^3\)

c) \(4xy^4z\)

d) \(4x^2y^4z\)

Câu 4: Phép chia đa thức \(8x^3-1\) cho đa thức \(4x^2+2x+1\)có thương là:

a) 2x + 1          b) -2x + 1       c)-2x - 1    d) 2x - 1

Câu 5: Mẫu thức chung của hai phân thức \(\frac{4}{x^2-9}\)và \(\frac{1-x}{x^2+3x}\)là:

a) \(\left(x-9\right)\left(x^2+3x\right)\)

b) \(x\left(x-9\right)\)

c) \(x\left(x+3\right)\left(x-3\right)\)

d) \(\left(x+3\right)\left(x-9\right)\)

Câu 6: Tổng hai phân thức: \(\frac{2x-1}{2x}\)\(\frac{4x+1}{2x}\)là:

a) \(1\)

b) \(\frac{6x-2}{2x}\)

c) \(3\)

d) \(\frac{6x+2}{2x}\)

Câu 7: Kết quả phép chia \(\frac{6x-3}{2x^3y^2}\) : \(\frac{12x-6}{4x^2y^3}\) là:

a) \(\frac{9\left(2x-1\right)^2}{4x^5y^5}\)

b) \(\frac{y}{x}\)

c) \(\frac{-y}{x}\)

d) \(\frac{x}{y}\)

Câu 8: Cho hình vẽ, biết AB//CD và AB= 4,5 cm ; DC= 6,5 cm . Độ dài EF là :

a) 4,5 cm

b) 5 cm

c) 5,5 cm

d) 6,5 cm

 

 

1
11 tháng 12 2018

\(\left(2x-3\right).\left(2x+3\right)=4x^2-9\)

\(20x^2y^6z^3:5xy^2z^2=4xy^4z\)

\(\frac{8x^3-1}{4x^2+2x+1}=\frac{\left(4x^2+2x+1\right).\left(2x-1\right)}{4x^2+2x+1}=2x-1\)

\(\frac{2x-1}{2x}+\frac{4x+1}{2x}=\frac{2x-1+4x+1}{2x}=3\)

Ta có: \(4x^2-9y^2\\ =\left(2x\right)^2-\left(3y\right)^2\\ =\left(2x-3y\right)\left(2x+3y\right)\)

Vậy: Chọn D

NV
24 tháng 6 2019

b/ \(3-100x+8x^2=8x^2+x-300\)

\(\Leftrightarrow-101x=-303\)

\(\Rightarrow x=3\)

c/ \(5\left(5x+2\right)-10\left(8x-1\right)=6\left(4x+2\right)-150\)

\(\Leftrightarrow25x+10-80x+10=24x+12-150\)

\(\Leftrightarrow-79x=-158\)

\(\Rightarrow x=2\)

d/ \(3\left(3x+2\right)-\left(3x+1\right)=12x+10\)

\(\Leftrightarrow9x+6-3x-1=12x+10\)

\(\Leftrightarrow-6x=5\)

\(\Rightarrow x=-\frac{5}{6}\)

e/ \(30x-6\left(2x-5\right)+5\left(x+8\right)=210+10\left(x-1\right)\)

\(\Leftrightarrow30x-12x+30+5x+40=210+10x-10\)

\(\Leftrightarrow13x=130\)

\(\Rightarrow x=10\)

NV
24 tháng 6 2019

\(A=x^2-4x+1=\left(x-2\right)^2-3\ge-3\)

\(\Rightarrow A_{min}=-3\) khi \(x=2\)

\(B=4x^2+4x+11=\left(2x+1\right)^2+10\ge10\)

\(\Rightarrow B_{min}=10\) khi \(x=-\frac{1}{2}\)

\(C=\left(x-1\right)\left(x+6\right)\left(x+2\right)\left(x+3\right)=\left(x^2+5x-6\right)\left(x^2+5x+6\right)\)

\(=\left(x^2+5x\right)^2-36\ge-36\)

\(\Rightarrow C_{min}=-36\) khi \(\left[{}\begin{matrix}x=0\\x=-5\end{matrix}\right.\)

\(D=-x^2-8x-16+21=21-\left(x+4\right)^2\le21\)

\(\Rightarrow C_{max}=21\) khi \(x=-4\)

\(E=-x^2+4x-4+5=5-\left(x-2\right)^2\le5\)

\(\Rightarrow E_{max}=5\) khi \(x=2\)

24 tháng 9 2018

a ) Sửa lại : \(\left(2x+\dfrac{1}{2}\right)\left(4x^2-x+\dfrac{1}{4}\right)=8x^3+\dfrac{1}{8}\)

b ) Sửa lại : \(\left(5x-2y\right)\left(25x^2+10xy+4y^2\right)=125x^3-8y^3\)

c ) Sửa lại : \(\left(x+2y\right)\left(x^2-2xy+4y^2\right)=x^3+8y^3\)

d ) Đ

20 tháng 4 2017

a) (4x2 – 9y2) : (2x – 3y) = [(2x)2 – (3y)2] : (2x – 3y) = 2x + 3y;

b) (27x3 – 1) : (3x – 1) = [(3x)3 – 1] : (3x – 1) = (3x)2 + 3x + 1 = 9x2 + 3x + 1

c) (8x3 + 1) : (4x2 – 2x + 1) = [(2x)3 + 1] : (4x2 – 2x + 1)

= (2x + 1)[(2x)2 – 2x + 1] : (4x2 – 2x + 1)

= (2x + 1)(4x2 – 2x + 1) : (4x2 – 2x + 1) = 2x + 1

d) (x2 – 3x + xy -3y) : (x + y)

= [(x2 + xy) – (3x + 3y)] : (x + y)

= [x(x + y) – 3(x + y)] : (x + y)

= (x + y)(x – 3) : (x + y)

= x – 3.

10 tháng 10 2017

Tính nhanh:

a) (4x2 – 9y2) : (2x – 3y); b) (27x3 – 1) : (3x – 1);

c) (8x3 + 1) : (4x2 – 2x + 1); d) (x2 – 3x + xy -3y) : (x + y)

Bài giải:

a) (4x2 – 9y2) : (2x – 3y) = [(2x)2 – (3y)2] : (2x – 3y) = 2x + 3y;

b) (27x3 – 1) : (3x – 1) = [(3x)3 – 1] : (3x – 1) = (3x)2 + 3x + 1 = 9x2 + 3x + 1

c) (8x3 + 1) : (4x2 – 2x + 1) = [(2x)3 + 1] : (4x2 – 2x + 1)

= (2x + 1)[(2x)2 – 2x + 1] : (4x2 – 2x + 1)

= (2x + 1)(4x2 – 2x + 1) : (4x2 – 2x + 1) = 2x + 1

d) (x2 – 3x + xy -3y) : (x + y)

= [(x2 + xy) – (3x + 3y)] : (x + y)

= [x(x + y) – 3(x + y)] : (x + y)

= (x + y)(x – 3) : (x + y)

= x – 3.



4 tháng 11 2016

này như thế này phải không

(4x2+4x-7x-7)(2x+3)= 4x(x+1)-7(x+1)= (4x-7)(x+1)

2 tháng 9 2016

Bài 1:

a)(4x-3)(3x+2)-(6x+1)(2x-5)+1

=12x2-x-6-12x2+28x+5+1

=27x

b)(3x+4)2+(4x-1)2+(2+5x)(2-5x)

=9x2+24x+16+16x2-8x+1+4-25x2

=16x+21

c)(2x+1)(4x2-2x+1)+(2-3x)(4+6x+9x2)-9

=8x3+1+8-27x3-9

=-19x3

 

2 tháng 9 2016

Bài 2:

a)3x(x-4)-x(5+3x)=-34

=>3x2-12x-3x2-5x=-34

=>-17x=-34

=>x=2

Vậy x=2

b)(3x+1)2+(5x-2)2=34(x+2)(x-2)

=>9x2+6x+1+25x2-20x+4=34(x2-4)

=>34x2-14x+5-34x2+136=0

=>-14x+141=0

=>-14x=-141

=>x=\(\frac{141}{14}\)

Vậy x=\(\frac{141}{14}\)

c)x3+3x2+3x+28=0

=>x3-x2+7x+4x2-4x+28=0

=>x(x2-x+7)+4(x2-x+7)=0

=>(x+4)(x2-x+7)=0

\(\Rightarrow\left[\begin{array}{nghiempt}x+4=0\\x^2-x+7=0\left(2\right)\end{array}\right.\)

\(\Rightarrow\left[\begin{array}{nghiempt}x=-4\\\left(2\right)\Leftrightarrow\left(x-\frac{1}{2}\right)^2+\frac{27}{4}>0\end{array}\right.\)

=>(2) vô nghiệm

Vậy x=-4

17 tháng 10 2017

(6x9 - 2x6 + 8x3) : 2x3

= (6x9 : 2x3) + (-2x6 : 2x3) + (8x3 : 2x3)

= (3x6 - x3 + 4)

=> Chọn C. (3x6 - x3 + 4)

25 tháng 4 2017

a)\(\frac{4x+3}{5}-\frac{6x-2}{7}=\frac{5x+4}{3}+3\)

   \(84x+63-90x+30=175x+140+315\)

    93-6x=175x+455

     -362=181x

       x=-2

25 tháng 4 2017

b)\(9x^2-1=\left(3x+1\right)\left(4x+1\right)\)

   \(\left(3x-1\right)\left(3x+1\right)-\left(3x+1\right)\left(4x+1\right)=0\)

      \(\left(3x+1\right)\left(3x-1-4x-1\right)=0\)

        \(\left(3x+1\right)\left(-x-2\right)=0\)

\(\Rightarrow\orbr{\begin{cases}3x+1=0\\-x-2=0\end{cases}\Rightarrow}\orbr{\begin{cases}x=-\frac{1}{3}\\x=-2\end{cases}}\)