A. 1
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 7 2016

Bài 1: 

\(\left(\frac{2}{5}\right)^2+5\frac{1}{2}\left(4,5-2\right)+\frac{2^3}{-4}\)

\(=\frac{4}{25}+\frac{11}{2}\cdot\frac{5}{2}-2\)

\(=\frac{4}{25}+\frac{55}{4}-2\)

\(=\frac{1191}{100}\)

Bài 2:

\(\left(x-0,2\right)^{10}+\left(y+3,10\right)^{20}=0\)

Ta có:  (x-0,2)^10 >/   0

     (y+3,10)   >/  0

=> (x-0,2)^10 =0

     x- 0,2 =0

      x= 0,2

và (y+ 3,10)^20 =0

     y+ 3,10 = 0

     y = -3,10

Vậy x= 0,2; y= -3,10

4 tháng 7 2016

Thank thầy phynit rất rất nhiều. ^^! ~.~

29 tháng 11 2017

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

b+c+d/a=c+d+a/b=d+a+b/c=a+b+c/d=3(a+b+c+d)/a+b+c+d=3

suy ra k=3

29 tháng 11 2017

taco:\(\dfrac{b+c+d}{a}=\dfrac{c+d+a}{b}+\dfrac{d+a+b}{c}=\dfrac{a+b+c}{d}=k\)=>\(\dfrac{b+c+d}{a}+1=\dfrac{c+d+a}{b}+1=\dfrac{a+b+d}{c}+1=\dfrac{a+b+c}{d}+1=k+1\)=>\(\dfrac{a+b+c+d}{a}=\dfrac{a+b+c+d}{b}=\dfrac{a+b+c+d}{c}=\dfrac{a+b+c+d}{d}=k+1=\dfrac{a+b+c+d+a+b+c+d+a+b+c+d}{a+b+c+d}=\dfrac{4.\left(a+b+c+d\right)}{a+b+c+d}=4\)

=>k+1=4

=>k=3

12 tháng 8 2016

Ta có :\(\frac{a+b}{ab}=\frac{b+c}{bc}=\frac{c+a}{ca}\)

          \(\Rightarrow\frac{1}{a}+\frac{1}{b}=\frac{1}{b}+\frac{1}{c}=\frac{1}{c}+\frac{1}{a}\)

          \(\Rightarrow\frac{1}{a}=\frac{1}{c};\frac{1}{b}=\frac{1}{a};\frac{1}{c}=\frac{1}{b}\)

          \(\Rightarrow\frac{1}{a}=\frac{1}{b}=\frac{1}{c}\)

          \(\Rightarrow a=b=c\)

         \(\Rightarrow ab=bc=ca=a^2=b^2=c^2\)

          \(\Rightarrow ab+bc+ca=a^2+b^2+c^2\)

          \(\Rightarrow\frac{ab+bc+ca}{a^2+b^2+c^2}=1\)

         Vậy M=1

14 tháng 10 2018

\(1)\)\(\frac{\overline{ab}}{b}=\frac{\overline{bc}}{c}=\frac{\overline{ca}}{a}\)

\(\Leftrightarrow\)\(\frac{10a+b}{b}=\frac{10b+c}{c}=\frac{10c+a}{a}\)

\(\Leftrightarrow\)\(\frac{10a}{b}=\frac{10b}{c}=\frac{10c}{a}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có : 

\(\frac{10a}{b}=\frac{10b}{c}=\frac{10c}{a}=\frac{10a+10b+10c}{a+b+c}=\frac{10\left(a+b+c\right)}{a+b+c}=10\)

Do đó : 

\(\frac{10a}{b}=10\)\(\Leftrightarrow\)\(a=b\)

\(\frac{10b}{c}=10\)\(\Leftrightarrow\)\(b=c\)

\(\frac{10c}{a}=10\)\(\Leftrightarrow\)\(c=a\)

\(\Rightarrow\)\(a=b=c\)

\(\Rightarrow\)\(A=\left(a-b\right)\left(b-c\right)\left(c-a\right)+2016=2016\)

\(2)\)\(\frac{\overline{ab}+\overline{bc}}{a+b}=\frac{\overline{bc}+\overline{ca}}{b+c}=\frac{\overline{ca}+\overline{ab}}{c+a}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có : 

\(\frac{\overline{ab}+\overline{bc}}{a+b}=\frac{\overline{bc}+\overline{ca}}{b+c}=\frac{\overline{ca}+\overline{ab}}{c+a}=\frac{2\left(\overline{ab}+\overline{bc}+\overline{ca}\right)}{2\left(a+b+c\right)}=\frac{\overline{ab}+\overline{bc}+\overline{ca}}{a+b+c}\)

\(=\frac{10a+b+10b+c+10c+a}{a+b+c}=\frac{11a+11b+11c}{a+b+c}=\frac{11\left(a+b+c\right)}{a+b+c}=11\)

Do đó : 

\(\frac{\overline{ab}+\overline{bc}}{a+b}=11\)\(\Leftrightarrow\)\(10a+11b+c=11a+11b\)\(\Leftrightarrow\)\(c=a\)

\(\frac{\overline{bc}+\overline{ca}}{b+c}=11\)\(\Leftrightarrow\)\(10b+11c+a=11b+11c\)\(\Leftrightarrow\)\(a=b\)

\(\frac{\overline{ca}+\overline{ab}}{c+a}=11\)\(\Leftrightarrow\)\(10c+11a+b=11c+11a\)\(\Leftrightarrow\)\(b=c\)

\(\Rightarrow\)\(a=b=c\)

\(\Rightarrow\)\(M=\left(\frac{b}{a}+1\right)\left(\frac{c}{b}+1\right)\left(\frac{a}{c}+1\right)+2016=2.2.2+2016=2024\)

Chúc bạn học tốt ~ 

14 tháng 10 2018

Ta có: \(\frac{a}{b+c+d}=\frac{b}{a+c+d}=\frac{c}{a+b+d}=\frac{d}{a+b+c}\)

\(\Rightarrow\frac{a}{b+c+d}+1=\frac{b}{a+c+d}+1=\frac{c}{a+b+d}+1=\frac{d}{a+b+c}+1\)

hay \(\frac{a+b+c+d}{b+c+d}=\frac{a+b+c+d}{a+c+d}=\frac{a+b+c+d}{a+b+d}=\frac{a+b+c+d}{a+b+c}\)

Do các tử số trên bằng nhau nên các mẫu số cũng bằng nhau hay \(b+c+d=a+c+d=a+b+d=a+b+c\)

Suy ra a = b =c =d

\(\Rightarrow A=\frac{a+b}{c+d}+\frac{b+c}{a+d}+\frac{c+d}{a+b}+\frac{d+a}{b+c}=1+1+1+1=4\)

18 tháng 4 2017

3 ∈ Q

3 \(\in\) R

3 \(\notin\) I

-2,53 \(\in\) Q

0,2(35) \(\notin\) I

N ⊂ Z

I ⊂ R.

18 tháng 8 2021

a,3 ∈ Q

b,3  R

c,3  I

d,-2,53  Q

e,0,2(35)  I

g,N ⊂ Z

h,I ⊂ R.

a: TH1: x<1

A=1-x+2-x=3-2x

TH2; 1<=x<2

A=x-1+2-x=1

TH3: x>=2

A=x-1+x-2=2x-3

b: TH1: x<5/2

B=5-2x+3-x+x-2=-2x+6

TH2: 5/2<=x<3

B=2x-5+3-x+x-2=2x-4

TH3: x>=3

B=x-3+2x-5+x-2=4x-10

c: TH1: x<-3/2

C=-2x-3-(5-x)+2x

=-2x-3-5+x+2x

=x-8

TH2: -3/2<=x<5

C=2x+3-(5-x)+2x=4x+3-5+x=5x-2

TH3: x>=5

C=2x+3-(x-5)+2x=4x+3-x+5=3x+8

13 tháng 9 2020

lếu lều ko nếu có thì ib mik nhá

19 tháng 4 2020

a) áp dụng định lý Pytago cho tam giác ABC vuông tại A có:

AB2+AC2=BC2

=> \(AC=\sqrt{BC^2-AB^2}=\sqrt{10^2-6^2}=\sqrt{100-36}=\sqrt{64}=8\left(cm\right)\left(AC>0\right)\)