Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) \(2x.\left(x-7\right)-\left(x+3\right)\left(x-2\right)-\left(x+4\right)\left(x-4\right)\)
\(=2x^2-14x-\left(x^2+x-6\right)-\left(x^2-4\right)\)
\(=-15x+10\)
b) \(2x.\left(x+1\right)^2-\left(x-1\right)^3-\left(x-2\right)\left(x^2+2x+4\right)\)
\(=2x.\left(x^2+2x+1\right)-\left(x^3-3x^2+3x-1\right)-\left(x^3-8\right)\)
\(=2x^3+4x^2+2x-x^3+3x^2-3x+1-x^3+8\)
\(=7x^2-x+9\)
c) \(\left(x-5\right)\left(x+5\right)\left(x+2\right)-\left(x+2\right)^3\)
\(=\left(x+2\right).\left[\left(x-5\right)\left(x+5\right)-\left(x+2\right)^2\right]\)
\(=\left(x+2\right).\left(x^2-25-x^2-4x-4\right)\)
\(=\left(x+2\right)\left(-4x-29\right)\)
\(=-4x^2-37x-58\)
d) \(\left(x-3\right)^3+\left(x-5\right)\left(x^2+5x+25\right)-\left(x-1\right)\left(x^2+x+1\right)\)
\(=x^3-9x^2+27x-27+\left(x^3-125\right)-\left(x^3-1\right)\)
\(=x^3-9x^2+27x-151\)
e) \(\left(x-1\right)^3-\left(x-2\right)\left(x^2-2x+4\right)+3x^2+2x\)
\(=x^3-3x^2+3x-1-\left(x^3-8\right)+3x^2+2x\)
\(=5x+7\)
Nhẩm ấy, ko nháp âu
\(2x\left(x-7\right)-\left(x+3\right)\left(x-2\right)-\left(x+4\right)\left(x-4\right)\)
\(=2x^2-14x-\left(x^2-2x+3x-6\right)-\left(x^2-4x+4x-16\right)\)
\(=2x^2-14x-x^2+x-6-x^2+16\)
\(=-13x-10\)
\(2x\left(x+1\right)^2-\left(x-1\right)^3-\left(x-2\right)\left(x^2+2x+4\right)\)
\(=2x\left(x^2+2x+1\right)-\left(x^3-3x^2+3x-1\right)-\left(x-2\right)\left(x+2\right)\)
\(-2x^3+4x^2+2x-x^3+3x^2-3x+1-x^2+4\)
\(=-3x^3+6x^2-x+5\)
1. (x + 2)(x2 - 2x + 4) - (x3 + 2x2) = 5
=> x(x2 - 2x + 4) + 2(x2 - 2x + 4) - x3 - 2x2 - 5 = 0
=> x3 - 2x2 + 4x + 2x2 - 4x + 8 - x3 - 2x2 - 5 = 0
=> (x3 - x3) + (-2x2 + 2x2 - 2x2) + (4x - 4x) + (8 - 5) = 0
=> -2x2 + 3 = 0
=> -2x2 = -3
=> x2 = 3/2
=> x = \(\pm\sqrt{\frac{3}{2}}\)
2. \(\left(x+5\right)^2-6=0\)
=> x2 + 10x + 25 - 6 = 0
=> x2 + 10x + 19 = 0
=> x vô nghiệm(do mình không để căn nên ghi vô nghiệm thôi nhá)
3. \(\left(x+3\right)\left(x^2-3x+9\right)-x^3=2x\)
=> x(x2 - 3x + 9) + 3(x2 - 3x + 9) - x3 - 2x = 0
=> x3 - 3x2 + 9x + 3x2 - 9x + 27 - x3 - 2x = 0
=> (x3 - x3) + (-3x2 + 3x2) + (9x - 9x - 2x) + 27 = 0
=> -2x + 27 = 0
=> -2x = -27
=> x = 27/2
4. \(\left(x-2\right)^3-x^3+6x^2=7\)
=> x3 - 6x2 + 12x - 8 - x3 + 6x2 = 7
=> (x3 - x3) + (-6x2 + 6x2) + 12x - 8 = 7
=> 12x - 8 = 7
=> 12x = 15
=> x = 5/4
5. \(3\left(x-2\right)^2+9\left(x-1\right)-3\left(x^2+x-3\right)=12\)
=> 3x2 - 12x + 12 + 9x - 9 - 3x2 - 3x + 9 = 12
=> (3x2 - 3x2) + (-12x + 9x - 3x) + (12 - 9 + 9) = 12
=> -6x + 12 = 12
=> -6x = 0
=> x = 0
6. \(\left(4x+3\right)^2-\left(4x-3\right)^2-5x-2=0\)
=> 48x - 5x - 2 = 0
=> 43x - 2 = 0
=> 43x = 2
=> x = 2/43
Còn bài cuối tự làm :>
Anh Sang làm cầu kì quá ;-;
1. ( x + 2 )( x2 - 2x + 4 ) - ( x3 + 2x2 ) = 5
<=> x3 + 8 - x3 - 2x2 = 5
<=> 8 - 2x2 = 5
<=> 2x2 = 3
<=> x2 = 3/2
<=> \(x^2=\left(\pm\sqrt{\frac{3}{2}}\right)^2\)
<=> \(x=\pm\sqrt{\frac{3}{2}}\)
2. ( x + 5 )2 - 6 = 0
<=> ( x + 5 )2 - ( √6 )2 = 0
<=> ( x + 5 - √6 )( x + 5 + √6 ) = 0
<=> \(\orbr{\begin{cases}x+5-\sqrt{6}=0\\x+5+\sqrt{6}=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\sqrt{6}-5\\x=-\sqrt{6}-5\end{cases}}\)
3. ( x + 3 )( x2 - 3x + 9 ) - x3 = 2x
<=> x3 + 27 - x3 = 2x
<=> 27 = 2x
<=> x = 27/2
4. ( x - 2 )3 - x3 + 6x2 = 7
<=> x3 - 6x2 + 12x - 8 - x3 + 6x2 = 7
<=> 12x - 8 = 7
<=> 12x = 15
<=> x = 15/12 = 5/4
5. 3( x - 2 )2 + 9( x - 1 ) - 3( x2 + x - 3 ) = 12
<=> 3( x2 - 4x + 4 ) + 9x - 9 - 3x2 - 3x + 9 = 12
<=> 3x2 - 12x + 12 + 6x - 3x2 = 12
<=> -6x + 12 = 12
<=> -6x = 0
<=> x = 0
6. ( 4x + 3 )2 - ( 4x - 3 )2 - 5x - 2 = 0
<=> 16x2 + 24x + 9 - ( 16x2 - 24x + 9 ) - 5x - 2 = 0
<=> 16x2 + 24x + 9 - 16x2 + 24x - 9 - 5x - 2 = 0
<=> 43x - 2 = 0
<=> 43x = 2
<=> x = 2/43
7, ( 4x + 7 )( 2 - 3x ) - ( 6x + 2 )( 5 - 2x ) = 0
<=> -12x2 - 13x + 14 - ( -12x2 + 26x + 10 ) = 0
<=> -12x2 - 13x + 14 + 12x2 - 26x - 10 = 0
<=> -39x + 4 = 0
<=> -39x = -4
<=> x = 4/39
1) -3x( x + 2 )2 + ( x + 3 )( x - 1 )( x + 1 ) - ( 2x - 3 )2
= -3x( x2 + 4x + 4 ) + ( x + 3 )( x2 - 1 ) - ( 4x2 - 12x + 9 )
= -3x3 - 12x2 - 12x + x3 + 3x2 - x -3 - 4x2 + 12x - 9
= ( -3x3 + x3 ) + ( -12x2 + 3x2 - 4x2 ) + ( -12x - x + 12x ) + ( -3 - 9 )
= -2x3 - 13x2 - x - 12
2) ( x - 3 )( x + 3 )( x + 2 ) - ( x - 1 )( x2 - 3 ) - 5x( x + 4 )2 - ( x - 5 )2
= ( x2 - 9 )( x + 2 ) - ( x3 - x2 - 3x + 3 ) - 5x( x2 + 8x + 16 ) - ( x2 - 10x + 25 )
= x3 + 2x2 - 9x - 18 - x3 + x2 + 3x - 3 - 5x3 - 40x2 - 80x - x2 + 10x - 25
= ( x3 - x3 - 5x3 ) + ( 2x2 + x2 - 40x2 - x2 ) + ( -9x + 3x - 80x + 10x ) + ( -18 - 3 - 25 )
= -5x3 - 38x2 - 76x - 46
3) 2x( x - 4 )2 - ( x + 5 )( x - 2 )( x + 2 ) + 2( x + 5 )2 + ( x - 5 )2
= 2x( x2 - 8x + 16 ) - ( x + 5 )( x2 - 4 ) + 2( x2 + 10x + 25 ) + x2 - 10x + 25
= 2x3 - 16x2 + 32x - ( x3 + 5x2 - 4x - 20 ) + 2x2 + 20x + 50 + x2 - 10x + 25
= 2x3 - 16x2 + 32x - x3 - 5x2 + 4x + 20 + 2x2 + 20x + 50 + x2 - 10x + 25
= ( 2x3 - x3 ) + ( -16x2 - 5x2 + 2x2 + x2 ) + ( 32x + 4x + 20x - 10x ) + ( 20 + 50 + 25 )
= x3 - 18x2 + 46x + 95
PTĐTTNT?
1.Đặt \(a^2+a=t\)
\(\Rightarrow\left(a^2+a\right)\left(a^2+a+1\right)-2\)
\(=t\left(t+1\right)-2\)
\(=t^2+t-2\)
\(=t^2+2t-\left(t+2\right)\)
\(=t\left(t+2\right)-\left(t+2\right)\)
\(=\left(t+2\right)\left(t-1\right)\)
Sửa đề:
\(x^4+2011x^2+2010x+2011\)
\(=\left(x^4-x\right)+2011x^2+2011x+2011\)
\(=x\left(x^3-1\right)+2011\left(x^2+x+1\right)\)
\(=x\left(x-1\right)\left(x^2+x+1\right)+2011\left(x^2+x+1\right)\)
\(=\left(x^2+x+1\right)\left(x^2-x+2011\right)\)
3. \(\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)-120\)
\(=\left(x^2+5x+4\right)\left(x^2+5x+6\right)-120\)
Đặt \(x^2+5x+4=t\)
\(\Rightarrow\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)-120\)
\(=t\left(t+2\right)-120\)
\(=t^2+2t+1-121\)
\(=\left(t+1\right)^2-11^2\)
\(=\left(t+1-11\right)\left(t+1+11\right)\)
\(=\left(t-10\right)\left(t+12\right)\)
\(=\left(x^2+5x-6\right)\left(x^2+5x+16\right)\)
\(=\left[\left(x^2-x\right)+\left(6x-6\right)\right]\left(x^2+5x+16\right)\)
\(=\left[x.\left(x-1\right)+6\left(x-1\right)\right]\left(x^2+5x+16\right)\)
\(=\left(x-1\right)\left(x+6\right)\left(x^2+5x+16\right)\)
4. \(\left(x^2+x+4\right)^2+8x\left(x^2+x+1\right)+15x^2\)
\(=\left(x^2+x+4\right)^2+2.\left(x^2+x+1\right).4x+\left(4x\right)^2-x^2\)
\(=\left(x^2+x+4+4x\right)^2-x^2\)
\(=\left(x^2+4+5x-x\right)\left(x^2+5x+x+4\right)\)
\(=\left(x^2+4x+4\right)\left(x^2+6x+4\right)\)
\(=\left(x+2\right)^2\left[\left(x^2+2.x.3+3^2\right)-\left(\sqrt{5}\right)^2\right]\)
\(=\left(x+2\right)^2\left[\left(x+3\right)^2-\left(\sqrt{5}\right)^2\right]\)
\(=\left(x+2\right)^2\left(x+3-\sqrt{5}\right)\left(x+3+\sqrt{5}\right)\)
\(\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)-120=\left(x^2+5x+4\right)\left(x^2+5x+6\right)-120\)
Đặt: x2+5x+4=t
Ta có:
\(t\left(t+2\right)-120=t^2+2t-120=t^2+12t-10t-120=t\left(t+12\right)-10\left(t+12\right)\)
\(=\left(t+12\right)\left(t-10\right)=\left(x^2+5x+16\right)\left(x^2+5x-6\right)\)
2.Tim x
a,(2x+1)2-4(x+2)2=9
<=> (4x2+4x+1)-4(x2+4x+4)=9
<=> -12x-15=9
<=> -12x=24
<=> x=-2
\(1a,\)\(\left(x^2-0,1\right)=\left(x-\sqrt{0,1}\right)\left(x+\sqrt{0,1}\right)\)
\(1b,\)\(\left(2a^2+b^2\right)^2=\left(2a^2\right)^2+2.2a^2.b^2+\left(b^2\right)^2=4a^4+4a^2b^2+b^4\)
\(1c,\)\(\left(a^2+5\right)\left(5-a^2\right)=\left(5+a^2\right)\left(5-a^2\right)=25-x^4\)
Bực olm quá! Không cho người ta giải gì hết,cứ giải cần hết bài thì bị bắt tải lại. Nãy giờ hơn 15 lần rồi! Lần nãy nữa không giải nữa đâu nhé olm!!!!! Bực vl!Admin fix nhanh cho em cái! Mấy lần rồi bực quá nên giờ không biết giải còn đúng hay không :v
\(\left(x-5\right)\left(x+5\right)-\left(x+3\right)^2+3\left(x-2\right)^2=\left(x+1\right)^2-\left(x+4\right)\left(x-4\right)+3x^2\)
\(\Leftrightarrow\left(x^2-5^2\right)-\left(x^2+2.3x+3^2\right)+3\left(x^2-2.2x+2^2\right)=\left(x^2+2x+1\right)-\left(x^2-4^2\right)+3x^2\)
\(\Leftrightarrow x^2-25-x^2-6x-9+3x^2-12x+4=x^2+2x+1-x^2+16+3x^2\)
\(\Leftrightarrow\left(x^2-x^2+3x^2\right)-\left(25+9-4\right)-\left(6x+12x\right)=\left(x^2-x^2+3x^2\right)+2x+\left(1+16\right)\)
\(\Leftrightarrow3x^2-30-18x=3x^2+2x+17\)
\(\Leftrightarrow3x^2-3x^2-18x-2x=30+17\)
\(\Leftrightarrow-20x=47\Leftrightarrow x=\frac{-47}{20}\)