Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\sqrt{1-x-2x^2}=\sqrt{\left(1+x\right)\left(1-2x\right)}\le\dfrac{1+x-2x+1}{2}=\dfrac{-x+2}{2}\)
(AM-GM)
do đó \(A\le\dfrac{x}{2}+\dfrac{-x+2}{2}=1\)
Dấu = xảy ra khi 1+x=1-2x <=> x=0 (tmđk)
;v Đề tuyển sinh là theo mỗi tỉnh ;v searrch gg tỉnh nào mà chẳng có =))
Vì đây là lần đầu tiên bn gửi câu hỏi nên mk đã kiên nhẫn dịch cái đề và hi vọng nó đúng!
Ta có: \(\left(\sqrt{8+2\sqrt{7}}+2.\sqrt{8-2\sqrt{7}}\right).\left(\sqrt{63}+1\right)\)
\(=\left(\sqrt{7+2\sqrt{7}+1}+2.\sqrt{7-2\sqrt{7}+1}\right).\left(\sqrt{63}+1\right)\)
\(=\left(\sqrt{\left(\sqrt{7}+1\right)^2}+2.\sqrt{\left(\sqrt{7}-1\right)^2}\right)\left(\sqrt{63}+1\right)\)
\(=\left(\left|\sqrt{7}+1\right|+2.\left|\sqrt{7}-1\right|\right).\left(\sqrt{63}+1\right)\)
\(=\left(\sqrt{7}+1+2\sqrt{7}-2\right)\left(\sqrt{63}+1\right)\)
\(=\left(3\sqrt{7}-1\right)\left(\sqrt{63}+1\right)\)
\(=\left(\sqrt{63}-1\right)\left(\sqrt{63}+1\right)=63-1=62\)
1: Xét (O) có
ΔAHC nội tiếp
AC là đường kính
Do đó: ΔAHC vuông tại H
=>AH\(\perp\)HC tại H
=>AH\(\perp\)BC tại H
2: Ta có: ΔAHB vuông tại H
mà HM là đường trung tuyến
nên HM=AM=MB
Xét ΔOAM và ΔOHM có
OA=OH
AM=HM
OM chung
Do đó: ΔOAM=ΔOHM
=>\(\widehat{OAM}=\widehat{OHM}=90^0\)
=>MH là tiếp tuyến của (O)
3: Xét (O) có
\(\widehat{DCH}\) là góc nội tiếp chắn cung DH
\(\widehat{DAH}\) là góc nội tiếp chắn cung DH
Do đó; \(\widehat{DCH}=\widehat{DAH}\)
mà \(\widehat{DAH}=\widehat{DAC}\)(AD là phân giác của góc HAC)
nên \(\widehat{DCH}=\widehat{DAC}\)
Xét ΔDCE và ΔDAC có
\(\widehat{DCE}=\widehat{DAC}\)
\(\widehat{CDE}\) chung
Do đó: ΔDCE đồng dạng với ΔDAC
=>\(\dfrac{DC}{DA}=\dfrac{DE}{DC}\)
=>\(DC^2=DA\cdot DE\)
No