\(\sqrt{\left(X-2005\right)^2}+\sqrt{\left(X-2006\right)^2}=1\)l) 
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 8 2017

c/ \(C'=\frac{1}{\frac{1}{3-2\sqrt{x}}}.\frac{1}{\frac{1}{\sqrt{3-2\sqrt{x}}}+1}=\frac{\sqrt{\left(3-2\sqrt{x}\right)^3}}{1+\sqrt{\left(3-2\sqrt{x}\right)}}\)

Đặt \(\sqrt{\left(3-2\sqrt{x}\right)}=a\)

\(\Rightarrow C'=\frac{a^3}{a+1}=a^2-a+1-\frac{1}{a+1}\)

Đế C' nguyên thì a + 1 là ước của 1

\(\Rightarrow a=0\)

\(\Rightarrow\sqrt{\left(3-2\sqrt{x}\right)}=0\)

\(\Rightarrow x=\frac{9}{4}\left(l\right)\)

Vậy không có x.

Không biết có nhầm chỗ nào không nữa. Lam biếng kiểm tra lại quá. You kiểm tra lại hộ nhé. Thanks

2 tháng 8 2017

a/ \(C=\left(\frac{2\sqrt{x}}{2x-5\sqrt{x}+3}-\frac{5}{2\sqrt{x}-3}\right):\left(3+\frac{2}{1-\sqrt{x}}\right)\)

\(=\left(\frac{2\sqrt{x}}{\left(\sqrt{x}-1\right)\left(2\sqrt{x}-3\right)}-\frac{5}{2\sqrt{x}-3}\right):\left(\frac{3\sqrt{x}-5}{\sqrt{x}-1}\right)\)

\(=\left(\frac{2\sqrt{x}-5\sqrt{x}+5}{\left(\sqrt{x}-1\right)\left(2\sqrt{x}-3\right)}\right):\left(\frac{3\sqrt{x}-5}{\sqrt{x}-1}\right)\)

\(=\frac{5-3\sqrt{x}}{\left(\sqrt{x}-1\right)\left(2\sqrt{x}-3\right)}.\frac{\sqrt{x}-1}{3\sqrt{x}-5}\)

\(=\frac{1}{3-2\sqrt{x}}\)

Câu b, c tự làm nhé

27 tháng 10 2019

a) \(A=\sqrt{x^2-2x+1}+\sqrt{x^2-6x+9}\)

\(=\sqrt{\left(x-1\right)^2}+\sqrt{\left(x-3\right)^2}\)

\(=\left|x-1\right|+\left|x-3\right|\ge\left|\left(x-1\right)+\left(3-x\right)\right|=2\)

Vậy\(A_{min}=2\Leftrightarrow\left(x-1\right)\left(3-x\right)\ge0\)

\(TH1:\hept{\begin{cases}x-1\ge0\\3-x\ge0\end{cases}}\Leftrightarrow1\le x\le3\)

\(TH1:\hept{\begin{cases}x-1\le0\\3-x\le0\end{cases}}\Leftrightarrow\hept{\begin{cases}x\le1\\x\ge3\end{cases}}\left(L\right)\)

Vậy \(A_{min}=2\Leftrightarrow1\le x\le3\)

10 tháng 7 2018

a) Áp dụng BĐT AM-GM ta có:

        \(x+y\ge2\sqrt{xy}\)

\(\Rightarrow\)\(\frac{x+y}{2}\ge\sqrt{xy}\)

Dấu "=" xảy ra  \(\Leftrightarrow\)\(x=y\)

b)  Áp dụng BĐT AM-GM ta có:

    \(\frac{\sqrt{x}}{\sqrt{y}}+\frac{\sqrt{y}}{\sqrt{x}}\ge2\sqrt{\frac{\sqrt{x}}{\sqrt{y}}.\frac{\sqrt{y}}{\sqrt{x}}}=2\)

Dấu "=" xảy ra  \(\Leftrightarrow\)\(x=y\)

3 tháng 4 2020

Câu 1 là \(\left(8x-4\right)\sqrt{x}-1\) hay là \(\left(8x-4\right)\sqrt{x-1}\)?

3 tháng 4 2020

Câu 1:ĐK \(x\ge\frac{1}{2}\)

\(4x^2+\left(8x-4\right)\sqrt{x}-1=3x+2\sqrt{2x^2+5x-3}\)

<=> \(\left(4x^2-3x-1\right)+4\left(2x-1\right)\sqrt{x}-2\sqrt{\left(2x-1\right)\left(x+3\right)}\)

<=> \(\left(x-1\right)\left(4x+1\right)+2\sqrt{2x-1}\left(2\sqrt{x\left(2x-1\right)}-\sqrt{x+3}\right)=0\)

<=> \(\left(x-1\right)\left(4x+1\right)+2\sqrt{2x-1}.\frac{8x^2-4x-x-3}{2\sqrt{x\left(2x-1\right)}+\sqrt{x+3}}=0\)

<=>\(\left(x-1\right)\left(4x+1\right)+2\sqrt{2x-1}.\frac{\left(x-1\right)\left(8x+3\right)}{2\sqrt{x\left(2x-1\right)}+\sqrt{x+3}}=0\)

<=> \(\left(x-1\right)\left(4x+1+2\sqrt{2x-1}.\frac{8x+3}{2\sqrt{x\left(2x-1\right)}+\sqrt{x+3}}\right)=0\)

Với \(x\ge\frac{1}{2}\)thì \(4x+1+2\sqrt{2x-1}.\frac{8x-3}{2\sqrt{x\left(2x-1\right)}+\sqrt{x+3}}>0\)

=> \(x=1\)(TM ĐKXĐ)

Vậy x=1

4 tháng 8 2019


╔┓┏╦━━╦┓╔┓╔━━╗
║┗┛║┗━╣┃║┃║ 0 0 ║
║┏┓║┏━╣┗╣┗╣╰°╯║
╚┛┗╩━━╩━╩━╩-2019||

4 tháng 8 2019

a)   x=-1

x=8

4 tháng 8 2019

a)  x=8 hoặc x=-1

Đặt ẩn phụ

g)  x=1 hoặc x=2 hoặc x=-3

Phân tích thành nhân tử rồi xét giá trị

4 tháng 8 2019

e) 

\(\sqrt{2x+1}-\sqrt{3x}=x-1\) 1

<=>\(2x+1-3x=\left(x+1\right)^2\)

<=>\(2x+1-3x=x^2-2x+1\)

<=> \(2x-3x-x^2+2x=1-1\)

<=> \(x-x^2=0\)

<=> \(x\left(1-x\right)=0\)

<=> \(x=0\)Hoặc \(1-x=0\)

trg hợp 1 : \(x=0\)

th2: \(1-x=0\)<=>\(x=1\)

4 tháng 8 2019

\(\sqrt{1+x}+\sqrt{8-x}+\sqrt{\left(x+1\right)\left(8-x\right)}=3\)

\(đkxđ\Leftrightarrow\hept{\begin{cases}x+1\ge0\\8-x\ge0\end{cases}\Rightarrow\hept{\begin{cases}x\ge-1\\x\le8\end{cases}\Rightarrow}-1\le x\le8}\)

Đặt \(\sqrt{1+x}=a\Rightarrow x+1=a^2.\)

\(a+b+ab=3\)

và \(\sqrt{8-x}=b\Rightarrow8-x=b^2\)\(\left(a,b\ge0\right)\)

Cộng hai vế xuống ta có :

\(a^2+b^2=x+1+8-x=9\)

Theo phương trình ta lại có :

\(a+b+ab=3\)

Ta có hệ phương trình :

\(\hept{\begin{cases}a^2+b^2=9\\a+b+ab=3\end{cases}}\)

Giải hệ ra tính nốt nhá :)) Mình nghĩ bài này chỉ làm theo cách này ngắn nhất thôi