
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


a) \(a=\sqrt{5}-1\Leftrightarrow a+2=\sqrt{5}+1\)
\(\Leftrightarrow\left(a+2\right)^2=\left(\sqrt{5}+1\right)^2\)
\(\Leftrightarrow a^2+4a+4=6+2\sqrt{5}\)
\(\Rightarrow a^2+4a=2+2\sqrt{5}\)
b) \(a=\sqrt{5}-1\Leftrightarrow a+1=\sqrt{5}\)
\(\Leftrightarrow\left(a+1\right)^2=5\Leftrightarrow a^2+2a+1=5\Rightarrow a^2+2a-4=0\)
c) \(\left(a^3+2a^2-4a+2\right)^{10}=\left[a\left(a^2+2a-4\right)+2\right]^{10}=\left(0+2\right)^{10}=1024\)
Quên còn phần d:
Ta có: \(a=\sqrt{5}-1>\sqrt{4}-1=2-1=1\)
Lại có: \(a=\sqrt{5}-1< \sqrt{9}-1=3-1=2\)
\(\Rightarrow1< a< 2\)

giúp mình với kết quả thôi cũng được .nhanh lên mình cần gấp.

Tu \(a=\sqrt[3]{55+\sqrt{3024}}+\sqrt[3]{55-\sqrt{3024}}\)
\(\Leftrightarrow a^3=110+3\sqrt[3]{55+\sqrt{3024}}\cdot\sqrt[3]{55-\sqrt{3024}}\left(\sqrt[3]{55+\sqrt{3024}}+\sqrt[3]{55-\sqrt{3024}}\right)\)
\(\Leftrightarrow a^3-3a-110=0\)
\(\Leftrightarrow\left(a-5\right)\left(a^2+5a+22\right)=0\)(de thay a^2+5a+22>0)
\(\Leftrightarrow a=5\Rightarrow P=\frac{7}{3}\)

a) \(3\sqrt{a^2-4a+4}=3\sqrt{\left(a-2\right)^2}=3\left|a-2\right|=3\left(a-2\right)\) (vì \(a\ge2\))
b) \(2\sqrt{9a^2+12a+4}=2\sqrt{\left(3a+2\right)^2}=2\left|3a+2\right|=2\left(-3a-2\right)=-2\left(3a+2\right)\) (vì \(a< -\frac{2}{3}\))

Từ kết quả bài toán suy ngược ra thôi
Muốn giải thích thì cứ phá 2 vế ra rồi so sánh là tìm ra cách tách biểu thức
Câu 4 mình ko biết giải quyết kiểu lớp 9 (mặc dù chắc chắn là biểu thức sẽ được biến đổi như vầy)
Đó là kiểu trình bày của lớp 11 hoặc 12 để bạn tham khảo thôi
\(K=a+\sqrt{\left(a-2\right)^2}=a+\left|a-2\right|=a+2-a=2\)