Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2b
Thay x = -1; y = 1 vào N ta đc:
\(N=\left(-1\right).1+\left(-1\right)^2.1^2+\left(-1\right)^3.1^3+\left(-1\right)^4.1^4+\left(-1\right)^5.1^5\)
\(=\left(-1\right)+1+\left(-1\right)+1+\left(-1\right)\)
\(=-1\)
a) \(\frac{1}{5}x^2y-10x^2y-\frac{1}{5}x^2y\)
\(=-10x^2y=-10.0,5^2.2=-5\)
b) \(5x^2y-7xy^2+5x^2y-10x^2y+5xy^2\)
\(=-2xy^2=-2.0,5.4=-44\)
I,Trắc nghiệm
Câu 1 ; A
Câu 2 ; C
Câu 3 ; D
Câu 4 ; B
Câu 5 ; D
II,Tự luận
Câu 6
a]
Giá trị [ x ] | 4 | 5 | 6 | 7 | 8 | 9 | 10 | |
Tần số [ n ] | 1 | 2 | 4 | 4 | 6 | 1 | 2 | N=20 |
b] \(\frac{4.1+5.2+6.4+7.4+8.6+9.1+10.2}{20}=1,2\)
Câu 7
a.
\(A(x)=-3x^3+2x-3x^3+1\)
\(=-6x^3+2x+1\)
\(B(x)=2x^2+3x^3-2x-5\)
\(=3x^3+2x^2-2x-5\)
b.\(Q(x)=A(x)+B(x)\)
\(\Rightarrow Q(x)=(-6x^3+2x+1)+(3x^3+2x^2-2x-5)\)
\(=(-6x^3+3x^3)+2x^2+(2x-2x)+(1-5)\)
\(=-3x^3+2x^2-4\)
c.Ta có ;
\(Q(x)=-3x^3+2x^2-4=0\)
\(\Rightarrow-3x^3+2x^2=4\)
\(\Rightarrow x^2(-3x+2)=4\)
\(\Rightarrow\)Đa thức Q[x] ko có nghiệm
Câu 8
A B C E D M
a.Áp dụng tính chất Py-ta-go vào tam giác vuông ABC có
\(BC^2=AB^2+AC^2\)
\(\Rightarrow BC^2=9^2+12^2\)
\(\Rightarrow BC^2=225\)
\(\Rightarrow BC=15\)cm
Vậy BC = 15cm
b.Xét hai tam giác vuông ABD và tam giác vuông MBD có
góc BAD = góc BMD = 90độ
cạnh BD chung
góc ABD = góc MBD [ vì BD là phân giác góc B ]
Do đó ; tam giác ABD = tam giác MBD [ cạnh huyền - góc nhọn ]
c.Xét hai tam giác vuông ADE và tam giác vuông MDC có
góc DAE = góc DMC = 90độ
AD = MD [ vì tam giác ABD = tam giác MBD theo câu b ]
góc ADE = góc MDC [ đối đỉnh ]
Do đó ; tam giác ADE = tam giác MDC [ cạnh góc vuông - góc nhọn ]
\(\Rightarrow\)AE = MC [ cạnh tương ứng ]
mà AB = MB [ vì tam giác ABD = tam giác MBD theo câu b ]
\(\Rightarrow\)AE + AB = MC + MB
\(\Rightarrow\)BE = BC
Vậy tam giác BEC là tam giác cân tại B
Chúc bạn học tốt nhé
nhớ kết bạn với mk nha
Mấy bài dễ tự làm nhé:D
1)
Đặt: \(\dfrac{a}{b}=\dfrac{c}{d}=k\Leftrightarrow\left\{{}\begin{matrix}a=bk\\c=dk\end{matrix}\right.\)
\(\left\{{}\begin{matrix}\dfrac{a}{a+b}=\dfrac{bk}{bk+b}=\dfrac{bk}{b\left(k+1\right)}=\dfrac{k}{k+1}\\\dfrac{c}{c+d}=\dfrac{dk}{dk+d}=\dfrac{dk}{d\left(k+1\right)}=\dfrac{k}{k+1}\end{matrix}\right.\)
Ta có điều phải chứng minh
\(\left\{{}\begin{matrix}\dfrac{a}{a-b}=\dfrac{bk}{bk-b}=\dfrac{bk}{b\left(k-1\right)}=\dfrac{k}{k-1}\\\dfrac{c}{c-d}=\dfrac{dk}{dk-d}=\dfrac{dk}{d\left(k-1\right)}=\dfrac{k}{k-1}\end{matrix}\right.\)
Ta có điều phải chứng minh
Câu 4:
a: Xét tứ giác ABDC có
M là trung điểm của AD
M là trung điểm của BC
Do đó: ABDC là hình bình hành
Suy ra: AB=DC
b: ta có: ABDC là hình bình hành
nên AB//DC
c: Xét hình bình hành ABDC có AB=AC
nên ABDC là hình thoi
=>CB là tia phân giác của góc ACD
a/ Ta có :
\(f\left(x\right)=\left(9x^3-\frac{1}{3}x^3\right)+\left(3x^2+\frac{1}{3}x^2-3x^2\right)+\left(-\frac{1}{3}x-3x+3x\right)+\left(27-9\right)\)
\(=\frac{26}{3}x^3+\frac{1}{3}x^2-\frac{1}{3}x+18\)
Vậy...
b/ Ta có :
+) \(P\left(3\right)=\frac{26}{3}.3^3+\frac{1}{3}.3^2-\frac{1}{3}.3+18=254\)
+) \(P\left(-3\right)=\frac{26}{3}.\left(-3\right)^3+\frac{1}{3}.\left(-3\right)^2-\frac{1}{3}.\left(-3\right)+18=-212\)
Vậy..
Cho mik hỏi câu 3 tại sao ra 7 ạy
bạn cứ tính các bậc của đơn thức có trong đa thức đó rồi lấy số lớn nhất vừa tìm được làm bậc của đa thức đó.