Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a,\(2x^2-8x+y^2+2y+9=0\)
\(\Rightarrow2\left(x^2-4x+4\right)+\left(y^2+2y+1\right)=0\)
\(\Rightarrow2\left(x-2\right)^2+\left(y+1\right)^2=0\)
Mà \(2\left(x-2\right)^2\ge0\forall x\); \(\left(y+1\right)^2\ge0\forall y\)
\(\Rightarrow2\left(x-2\right)^2+\left(y+1\right)^2\ge0\forall x;y\)
Dấu "=" xảy ra<=> \(\hept{\begin{cases}2\left(x-2\right)^2=0\\\left(y+1\right)^2=0\end{cases}\Rightarrow\hept{\begin{cases}x=2\\y=-1\end{cases}}}\)
Vậy x=2;y=-1
f) x2 + 2y2 - 2xy + 2x + 2 - 4y =0
<=>x2 + y2 - 2xy+2x-2y+y2-2y+1+1=0
<=>(x-y)2+2(x-y)+1+(y-1)2=0
<=>(x-y+1)2+(y-1)2=0
<=>y=1;x=0
Bạn học thầy Trung phải k nè~~~~
Busted :))))
\(x^2-4xy+5y^2=16\)
\(\Leftrightarrow\left(x^2-4xy+4y^2\right)+y^2=16\)
\(\Leftrightarrow\left(x-2y\right)^2+y^2=16=4^2+0^2=0^2+4^2\)
\(TH1:\left\{{}\begin{matrix}\left(x-2y\right)^2=4^2\\y^2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=4;x=-4\\y=0\end{matrix}\right.\)
\(TH2:\left\{{}\begin{matrix}\left(x-2y\right)^2=0\\y^2=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=4\\y=2\end{matrix}\right.\left(h\right)\left\{{}\begin{matrix}x=-4\\y=-2\end{matrix}\right.\)
\(xy+3x-y=38\)
\(\Leftrightarrow\left(xy-y\right)+\left(3x-3\right)=35\)
\(\Leftrightarrow y\left(x-1\right)+3\left(x-1\right)=35\)
\(\Leftrightarrow\left(x-1\right)\left(y+3\right)=35\)
Làm nốt
có ai trả lời không?