Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,\sqrt{0,1^2}=0,1\)
\(b,\sqrt{\left(-0,4\right)^2}=|-0,4|=0,4\)
\(c,-\sqrt{\left(-1,7\right)^2}=-|-1,7|=-1,7\)
\(d,-0,5\sqrt{\left(-0,5\right)^4}=\frac{-1}{2}\sqrt{[\left(\frac{-1}{2}\right)^2]^2}=-\frac{1}{2}.\left(\frac{1}{2}\right)^2=\frac{-1}{2}.\frac{1}{4}=\frac{-1}{8}\)
\(e,\sqrt{\left(1-\sqrt{2}\right)^2}=|1-\sqrt{2}|=\sqrt{2}-1\)
\(g,\sqrt{\left(\sqrt{3}-1\right)^2}=|\sqrt{3}-1|=\sqrt{3}-1\)
\(a.\left(\sqrt{28}-2\sqrt{14}+\sqrt{7}\right)\sqrt{7}+7\sqrt{8}=\left(2\sqrt{7}-2\sqrt{14}+\sqrt{7}\right)\sqrt{7}+7\sqrt{8}=3.7-2.\sqrt{7.2.7}+14\sqrt{2}=21\) \(b.\left(15\sqrt{50}+5\sqrt{200}-3\sqrt{450}\right):10=\left(75\sqrt{2}+50\sqrt{2}-45\sqrt{2}\right).\dfrac{1}{10}=80\sqrt{2}.\dfrac{1}{10}=8\sqrt{2}\) \(c.\left(\sqrt{8}-3\sqrt{2}+\sqrt{10}\right)\left(\sqrt{2}-3\sqrt{0,4}\right)=\left(\sqrt{10}-\sqrt{2}\right)\left(\sqrt{2}-3\sqrt{\dfrac{2}{5}}\right)=\left(\sqrt{5}-1\right)\left(2-6\sqrt{\dfrac{1}{5}}\right)\)
@.@ Trời ơi, nhiều thế ^^
a) \(\left(\sqrt{8}-3\sqrt{2}+\sqrt{10}\right)\left(\sqrt{2}-3\sqrt{0,4}\right)=\left(2\sqrt{2}-3\sqrt{2}+\sqrt{10}\right)\left(\sqrt{2}-\frac{3\sqrt{2}}{\sqrt{5}}\right)\)
\(=\left(\sqrt{2}.\sqrt{5}-\sqrt{2}\right)\left(\sqrt{2}-\frac{3\sqrt{2}}{\sqrt{5}}\right)=2\sqrt{5}-2-6+\frac{6}{\sqrt{5}}=\frac{16\sqrt{5}}{5}-8\)
b) \(\left(15\sqrt{50}+5\sqrt{200}-3\sqrt{450}\right):\sqrt{10}=\frac{75\sqrt{2}+50\sqrt{2}-45\sqrt{2}}{\sqrt{10}}=\frac{80\sqrt{2}}{\sqrt{10}}=\frac{80}{\sqrt{5}}=16\sqrt{5}\)c) \(\sqrt[3]{20+14\sqrt{2}}+\sqrt[3]{20-14\sqrt{2}}=\sqrt[3]{\left(2+\sqrt{2}\right)^3}+\sqrt[3]{\left(2-\sqrt{2}\right)^3}\)
\(=2+\sqrt{2}+2-\sqrt{2}=4\)
d) \(\sqrt{6+2\sqrt{5}}+\sqrt{6-2\sqrt{5}}=\sqrt{\left(\sqrt{5}+1\right)^2}+\sqrt{\left(\sqrt{5}-1\right)}^2\)
\(=\sqrt{5}+1+\sqrt{5}-1=2\sqrt{5}\)
e) \(\sqrt{11+6\sqrt{2}}-\sqrt{11-6\sqrt{2}}=\sqrt{\left(3+\sqrt{2}\right)^2}-\sqrt{\left(3-\sqrt{2}\right)^2}\)
\(=3+\sqrt{2}-3+\sqrt{2}=2\sqrt{2}\)
f)\(\sqrt[3]{5\sqrt{2}+7}-\sqrt[3]{5\sqrt{2}-7}=\sqrt[3]{\left(1+\sqrt{2}\right)^3}-\sqrt[3]{\left(\sqrt{2}-1\right)^3}=1+\sqrt{2}-\sqrt{2}+1=2\)g) \(\sqrt[3]{26+15\sqrt{3}}-\sqrt[3]{26-15\sqrt{3}}=\sqrt[3]{\left(2+\sqrt{3}\right)^3}-\sqrt[3]{\left(2-\sqrt{3}\right)^3}\)
\(=2+\sqrt{3}-2+\sqrt{3}=2\sqrt{3}\)
1) \(\sqrt{x^2-3x+7}=\sqrt{x^2-2.\frac{3}{2}x+\frac{9}{4}+\frac{19}{4}}\)
\(=\sqrt{\left(x-\frac{3}{2}\right)^2+\frac{19}{4}}\)
Vì \(\left(x-\frac{3}{2}\right)^2+\frac{19}{4}>0\)nên bt luôn có nghĩa với mọi x
\(i,\sqrt{12,1.360}=\sqrt{12,1}.6\sqrt{10}=6.\sqrt{12,1.10}=6.\sqrt{121}=6.\sqrt{11^2}=6.11=66\)
\(k,\sqrt{0,4}.\sqrt{6,4}=\sqrt{0,4.6,4}=\sqrt{\dfrac{64}{25}}=\dfrac{\sqrt{8^2}}{\sqrt{5^2}}=\dfrac{8}{5}\)
\(l,-0,4.\sqrt{\left(-0,4\right)^2}=-0,4.0,4=-0,16\)
\(m,\sqrt{2^4.\left(-7\right)^2}=\sqrt{4^2}.\sqrt{\left(-7\right)^2}=4.7=28\)
i, \(\sqrt{12,1\cdot360}=\sqrt{4356}=\sqrt{66^2}=66\)
k, \(\sqrt{0,4}.\sqrt{6,4}=\sqrt{0,4\cdot6,4}=\sqrt{\dfrac{64}{25}}=\sqrt{\dfrac{2^6}{5^2}}=\dfrac{2^3}{5}=\dfrac{8}{5}\)
l, \(-0,4\sqrt{\left(-0,4\right)^2}=-0,4\cdot\left|-0,4\right|=-0,4\cdot0,4=-\dfrac{4}{25}\)
m, \(\sqrt{2^4\cdot\left(-7\right)^2}=2^2\cdot\left|-7\right|=4\cdot7=28\)