\(\int\frac{1dx}{\sin^2\cos^{2^{ }}}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
15 tháng 12 2016

Giải như sau:

Do \(\cos^2x+\sin^2x=1,\left(\tan x\right)'=\frac{1}{\cos^2x},\left(\cot x\right)'=-\frac{1}{\sin^2x}\) nên ta có

\(\int\frac{dx}{\cos^2x.sin^2x}=\int\left(\frac{1}{\cos^2x}+\frac{1}{\sin^2x}\right)dx=\int d\left(\tan x\right)-\int d\left(\cot x\right)=\tan x-\cot x+c\)

15 tháng 12 2016

cảm ơn bạn nhé :))

 

AH
Akai Haruma
Giáo viên
29 tháng 12 2016

a)\(\int \sin ^2\left (\frac{x}{2}\right)dx=\int \frac{1-\cos x }{2}dx=\frac{x}{2}-\frac{\sin x}{2}+c\)

b)\(\int \cos ^2 \left (\frac{x}{2}\right)dx=\int \frac{1+\cos x}{2}dx=\frac{x}{2}+\frac{\sin x}{2}+c\)

c) \(\int \frac{(2x+1)dx}{x^2+x+5}=\int \frac{d(x^2+x+5)}{x^2+x+5}=ln(x^2+x+5)+c\)

d)\(\int (2\tan x+ \cot x)^2dx=4\int \tan ^2 x+\int \cot^2 x+4\int dx=4\int \frac{1-\cos^2 x}{\cos^2 x}dx+\int \frac{1-\sin^2 x}{\sin^2 x}dx+4\int dx \)\( =4\int d(\tan x)-\int d(\cot x)-\int dx=4\tan x-\cot x-x+c\)

30 tháng 12 2016

c.ơn bạn nhé Akai Haruma ^^

NV
14 tháng 4 2020

Ko thể dịch nổi đề câu 1 a;b, chỉ đoán thôi. Còn câu 2 thì thực sự là chẳng hiểu bạn viết cái gì nữa? Chưa bao giờ thấy kí hiệu tích phân đi kèm kiểu đó

Câu 1:

a/ \(\int\frac{2x+4}{x^2+4x-5}dx=\int\frac{d\left(x^2+4x-5\right)}{x^2+4x-5}=ln\left|x^2+4x-5\right|+C\)

b/ \(\int\frac{1}{x.lnx}dx\)

Đặt \(t=lnx\Rightarrow dt=\frac{dx}{x}\)

\(\Rightarrow I=\int\frac{dt}{t}=ln\left|t\right|+C=ln\left|lnx\right|+C\)

c/ \(I=\int x.sin\frac{x}{2}dx\)

Đặt \(\left\{{}\begin{matrix}u=x\\dv=sin\frac{x}{2}dx\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}du=dx\\v=-2cos\frac{x}{2}\end{matrix}\right.\)

\(\Rightarrow I=-2x.cos\frac{x}{2}+2\int cos\frac{x}{2}dx=-2x.cos\frac{x}{2}+4sin\frac{x}{2}+C\)

d/ Đặt \(\left\{{}\begin{matrix}u=ln\left(2x\right)\\dv=x^3dx\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}du=\frac{2dx}{2x}=\frac{dx}{x}\\v=\frac{1}{4}x^4\end{matrix}\right.\)

\(\Rightarrow I=\frac{1}{4}x^4.ln\left(2x\right)-\frac{1}{4}\int x^3dx=\frac{1}{4}x^4.ln\left(2x\right)-\frac{1}{16}x^4+C\)

25 tháng 12 2016

1) Đặt \(t=1+\sqrt{x-1}\Leftrightarrow x=\left(t-1\right)^2+1\forall t\ge1\Rightarrow dx=d\left(t-1\right)^2=2dt\)

\(\Rightarrow I_1=\int\frac{\left(t-1\right)^2+1}{t}\cdot2dt=2\int\frac{t^2-2t+2}{t}dt=2\int\left(t-2+\frac{2}{t}\right)dt\\ =t^2-4t+4lnt+C\)

Thay x vào ta có...

25 tháng 12 2016

2) \(I_2=\int\frac{2sinx\cdot cosx}{cos^3x-\left(1-cos^2x\right)-1}dx=\int\frac{-2cosx\cdot d\left(cosx\right)}{cos^3x+cos^2x-2}=\int\frac{-2t\cdot dt}{t^3+t-2}\)

\(I_2=\int\frac{-2t}{\left(t-1\right)\left(t^2+2t+2\right)}dt=-\frac{2}{5}\int\frac{dt}{t-1}+\frac{1}{5}\int\frac{2t+2}{t^2+2t+2}dt-\frac{6}{5}\int\frac{dt}{\left(t+1\right)^2+1}\)

Ta có:

\(\int\frac{2t+2}{t^2+2t+2}dt=\int\frac{d\left(t^2+2t+2\right)}{t^2+2t+2}=ln\left(t^2+2t+2\right)+C\)

\(\int\frac{dt}{\left(t+1\right)^2+1}=\int\frac{\frac{1}{cos^2m}}{tan^2m+1}dm=\int dm=m+C=arctan\left(t+1\right)+C\)

Thay x vào, ta có....

 

AH
Akai Haruma
Giáo viên
2 tháng 12 2017

1)

Ta có \(P_1=\int \frac{\cos xdx}{2\sin x-7}=\int \frac{d(\sin x)}{3\sin x-7}\)

Đặt \(\sin x=t\Rightarrow P_1=\int \frac{dt}{3t-7}=\frac{1}{3}\int \frac{d(3t-7)}{3t-7}=\frac{1}{3}\ln |3t-7|+c\)

\(=\frac{1}{3}\ln |3\sin x-7|+c\)

2)

\(P_2=\int \sin xe^{2\cos x+3}dx\)

Đặt \(\cos x=t\)

\(P_2=-\int e^{2\cos x+3}d(\cos x)=-\int e^{2t+3}dt\)

\(=-\frac{1}{2}\int e^{2t+3}d(2t+3)=\frac{-1}{2}e^{2t+3}+c\)

\(=\frac{-e^{2\cos x+3}}{2}+c\)

AH
Akai Haruma
Giáo viên
2 tháng 12 2017

3)

\(P_3=\int \frac{\sin x+x\cos x}{(x\sin x)^2}dx\)

Để ý rằng \((x\sin x)'=x'\sin x+x(\sin x)'=\sin x+x\cos x\)

Do đó: \(d(x\sin x)=(x\sin x)'dx=(\sin x+x\cos x)dx\)

Suy ra \(P_3=\int \frac{d(x\sin x)}{(x\sin x)^2}\)

Đặt \(x\sin x=t\Rightarrow P_3=\int \frac{dt}{t^2}=\frac{-1}{t}+c=\frac{-1}{x\sin x}+c\)

GV
4 tháng 5 2017

a) \(\sin^4x=\left(\sin^2x\right)^2=\left(\dfrac{1-\cos2x}{2}\right)^2\)

\(=\dfrac{1}{4}\left(1-2\cos2x+\cos^22x\right)\)

\(=\dfrac{1}{4}\left(1-2.\cos2x+\dfrac{1+\cos4x}{2}\right)\)

\(=\dfrac{3}{8}-\dfrac{1}{2}\cos2x+\dfrac{1}{8}\cos4x\)

Vậy:

\(\int\sin^4x\text{dx}=\int\left(\dfrac{3}{8}-\dfrac{1}{2}\cos2x+\dfrac{1}{8}\cos4x\right)\text{dx}\)

\(=\dfrac{3}{8}x-\dfrac{1}{4}\sin2x+\dfrac{1}{32}\sin4x+C\)

AH
Akai Haruma
Giáo viên
12 tháng 1 2017

Lời giải:

Câu 1:

\(A=\int\frac{dx}{1+\sin x}=\int \frac{(1-\sin x)dx}{1-\sin^2 x}=\int\frac{(1-\sin x)dx}{\cos ^2x}=\int\frac{dx}{\cos ^2x}-\int\frac{\sin x dx}{\cos^2 x}\)

\(\Leftrightarrow A=\int d(\tan x)+\int\frac{d(\cos x)}{\cos^2 x}=\tan x-\frac{1}{\cos x}+c\)

Câu 2:

\(B=\int \sin ^4 xdx=\int \sin^2 x(1-\cos ^2x)dx=\int \sin^2 xdx-\int \sin^2 x\cos^2xdx\)

Ta thấy \(\int \sin^2xdx=\frac{1}{2}\int (1-\cos 2x)dx=\frac{x}{2}-\frac{\sin 2x}{4}+c\)

\(\int \sin ^2x\cos^2xdx=\frac{1}{4}\int \sin^22xdx=\frac{1}{8}\int (1-\cos4x)dx=\frac{x}{8}-\frac{\sin 4x}{32}+c\)

\(\Rightarrow B=\frac{3}{8}-\frac{\sin 2x}{4}+\frac{\sin 4x}{32}+c\)

AH
Akai Haruma
Giáo viên
12 tháng 1 2017

Câu 3:

\(C=\int (\sin ^6 x+\cos^6 x)dx=\int (\sin^2x+\cos^2x)[\sin^4x-\sin^2x\cos^2x+\cos^4x)dx\)

\(\Leftrightarrow C=\int [(\sin^2x+\cos^2x)^2-3\sin^2x\cos^2x]dx\)

\(\Leftrightarrow C=\int dx-\frac{3}{4}\int\sin^22xdx=\int dx-\frac{3}{8}\int (1-\cos 4x)dx\)

\(\Leftrightarrow C=x-\frac{3x}{8}+\frac{3\sin 4x}{32}+c=\frac{5x}{8}+\frac{3\sin 4x}{32}+c\)

13 tháng 3 2022

undefined