Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 1)
Đặt \(\left\{\begin{matrix} u=\ln ^2x\\ dv=\frac{1}{x^2}dx\end{matrix}\right.\Rightarrow \left\{\begin{matrix} du=\frac{2\ln x}{x}\\ v=\frac{-1}{x}\end{matrix}\right.\)
\(\int \left ( \frac{\ln}{x} \right )^2dx=\frac{-\ln^2x}{x}+2\int \frac{\ln x}{x^2}dx\)
Đặt \(\left\{\begin{matrix} t=\ln x\\ dk=\frac{1}{x^2}dx\end{matrix}\right.\Rightarrow \left\{\begin{matrix} dt=\frac{1}{x}dx\\ k=-\frac{1}{x}\end{matrix}\right.\Rightarrow \int \frac{\ln x}{x^2}dx=-\frac{\ln x}{x}+\int \frac{1}{x^2}dx=\frac{-\ln x}{x}-\frac{1}{x}\)
\(\Rightarrow I=\left.\begin{matrix} e\\ 1\end{matrix}\right|\left(\frac{-\ln^2 x}{x}-\frac{2\ln x}{x}-\frac{2}{x}\right)=2-\frac{5}{e}\)
Câu 2)
\(I=\int ^{\frac{\pi}{4}}_{0}\frac{x}{1+\cos 2x}dx=\frac{1}{2}\int ^{\frac{\pi}{4}}_{0}\frac{x}{\cos^2x}dx\)
Đặt \(\left\{\begin{matrix} u=x\\ dv=\frac{dx}{\cos^2x}\end{matrix}\right.\Rightarrow \left\{\begin{matrix} du=dx\\ v=\tan x\end{matrix}\right.\Rightarrow I=\left.\begin{matrix} \frac{\pi}{4}\\ 0\end{matrix}\right|\frac{x\tan x}{2}-\frac{1}{2}\int^{\frac{\pi}{4}}_{0} \tan xdx\)
\(=\frac{\pi}{8}+\frac{1}{2}\int ^{\frac{\pi}{4}}_{0}\frac{d(\cos x)}{\cos x}=\frac{\pi}{8}+\left.\begin{matrix} \frac{\pi}{4}\\ 0\end{matrix}\right|\frac{\ln |\cos x|}{2}=\frac{\pi}{8}+\frac{\ln\frac{\sqrt{2}}{2}}{2}\)
\(\int\frac{1+sin2x+cos2x}{sinx+cosx}dx\)
\(=\int\frac{sin^2x+cos^2x+2sinxcosx+cos^2x-sin^2x}{sinx+cosx}dx\)
\(=\int\frac{\left(sinx+cosx\right)^2+\left(cosx-sinx\right)\left(cosx+sinx\right)}{sinx+cosx}dx\)
\(=\int\left(sinx+cosx+cosx-sinx\right)dx=\int2cosxdx=2sinx\)
Câu a)
\(\int \frac{1}{\cos^4x}dx=\int \frac{\sin ^2x+\cos^2x}{\cos^4x}dx=\int \frac{\sin ^2x}{\cos^4x}dx+\int \frac{1}{\cos^2x}dx\)
Xét \(\int \frac{1}{\cos^2x}dx=\int d(\tan x)=\tan x+c\)
Xét \(\int \frac{\sin ^2x}{\cos^4x}dx=\int \frac{\tan ^2x}{\cos^2x}dx=\int \tan^2xd(\tan x)=\frac{\tan ^3x}{3}+c\)
Vậy :
\(\int \frac{1}{\cos ^4x}dx=\frac{\tan ^3x}{3}+\tan x+c\)
\(\Rightarrow \int ^{\frac{\pi}{3}}_{\frac{\pi}{6}}\frac{dx}{\cos^4 x}=\)\(\left.\begin{matrix} \frac{\pi}{3}\\ \frac{\pi}{6}\end{matrix}\right|\left ( \frac{\tan ^3 x}{3}+\tan x+c \right )=\frac{44}{9\sqrt{3}}\)
Câu b)
\(\int \frac{(x+1)^2}{x^2+1}dx=\int \frac{x^2+1+2x}{x^2+1}dx=\int dx+\int \frac{2xdx}{x^2+1}\)
\(=x+c+\int \frac{d(x^2+1)}{x^2+1}=x+\ln (x^2+1)+c\)
Do đó:
\(\int ^{1}_{0}\frac{(x+1)^2}{x^2+1}dx=\left.\begin{matrix} 1\\ 0\end{matrix}\right|(x+\ln (x^2+1)+c)=\ln 2+1\)
Câu c)
\(\int \frac{x^2+2\ln x}{x}dx=\int xdx+2\int \frac{2\ln x}{x}dx\)
\(=\frac{x^2}{2}+c+2\int \ln xd(\ln x)\)
\(=\frac{x^2}{2}+c+\ln ^2x\)
\(\Rightarrow \int ^{2}_{1}\frac{x^2+2\ln x}{x}dx=\left.\begin{matrix} 2\\ 1\end{matrix}\right|\left ( \frac{x^2}{2}+\ln ^2x +c \right )=\frac{3}{2}+\ln ^22\)
Câu d)
\(\int^{2}_{1} \frac{x^2+3x+1}{x^2+x}dx=\int ^{2}_{1}dx+\int ^{2}_{1}\frac{2x+1}{x^2+x}dx\)
\(=\left.\begin{matrix} 2\\ 1\end{matrix}\right|x+\int ^{2}_{1}\frac{d(x^2+x)}{x^2+x}=1+\left.\begin{matrix} 2\\ 1\end{matrix}\right|\ln |x^2+x|=1+\ln 6-\ln 2\)
\(=1+\ln 3\)
a)
Ta có \(A=\int ^{\frac{\pi}{4}}_{0}\cos 2x\cos^2xdx=\frac{1}{4}\int ^{\frac{\pi}{4}}_{0}\cos 2x(\cos 2x+1)d(2x)\)
\(\Leftrightarrow A=\frac{1}{4}\int ^{\frac{\pi}{2}}_{0}\cos x(\cos x+1)dx=\frac{1}{4}\int ^{\frac{\pi}{2}}_{0}\cos xdx+\frac{1}{8}\int ^{\frac{\pi}{2}}_{0}(\cos 2x+1)dx\)
\(\Leftrightarrow A=\frac{1}{4}\left.\begin{matrix} \frac{\pi}{2}\\ 0\end{matrix}\right|\sin x+\frac{1}{16}\left.\begin{matrix} \frac{\pi}{2}\\ 0\end{matrix}\right|\sin 2x+\frac{1}{8}\left.\begin{matrix} \frac{\pi}{2}\\ 0\end{matrix}\right|x=\frac{1}{4}+\frac{\pi}{16}\)
b)
\(B=\int ^{1}_{\frac{1}{2}}\frac{e^x}{e^{2x}-1}dx=\frac{1}{2}\int ^{1}_{\frac{1}{2}}\left ( \frac{1}{e^x-1}-\frac{1}{e^x+1} \right )d(e^x)\)
\(\Leftrightarrow B=\frac{1}{2}\left.\begin{matrix} 1\\ \frac{1}{2}\end{matrix}\right|\left | \frac{e^x-1}{e^x+1} \right |\approx 0.317\)
c)
Có \(C=\int ^{1}_{0}\frac{(x+2)\ln(x+1)}{(x+1)^2}d(x+1)\).
Đặt \(x+1=t\)
\(\Rightarrow C=\int ^{2}_{1}\frac{(t+1)\ln t}{t^2}dt=\int ^{2}_{1}\frac{\ln t}{t}dt+\int ^{2}_{1}\frac{\ln t}{t^2}dt\)
\(=\int ^{2}_{1}\ln td(\ln t)+\int ^{2}_{1}\frac{\ln t}{t^2}dt=\frac{\ln ^22}{2}+\int ^{2}_{1}\frac{\ln t}{t^2}dt\)
Đặt \(\left\{\begin{matrix} u=\ln t\\ dv=\frac{dt}{t^2}\end{matrix}\right.\Rightarrow \left\{\begin{matrix} du=\frac{dt}{t}\\ v=\frac{-1}{t}\end{matrix}\right.\Rightarrow \int ^{2}_{1}\frac{\ln t}{t^2}dt=\left.\begin{matrix} 2\\ 1\end{matrix}\right|-\frac{\ln t+1}{t}=\frac{1}{2}-\frac{\ln 2 }{2}\)
\(\Rightarrow C=\frac{1}{2}-\frac{\ln 2}{2}+\frac{\ln ^22}{2}\)
Lời giải:
Ta có:
\(\int ^{\frac{\pi}{2}}_{0}\frac{\sin x}{(\sin x+\cos x)^3}dx=\int ^{\frac{\pi}{2}}_{\frac{\pi}{4}}\frac{\sin x}{(\sin x+\cos x)^3}dx+\int ^{\frac{\pi}{4}}_{0}\frac{\sin x}{(\sin x+\cos x)^3}dx\)
\(=A+B\)
Xét riêng rẽ:
\(A=\int ^{\frac{\pi}{2}}_{\frac{\pi}{4}}\frac{\sin^3 x}{(\sin x+\cos x)^3}.\frac{dx}{\sin ^2x}=\int ^{\frac{\pi}{2}}_{\frac{\pi}{4}}\frac{1}{\left(\frac{\sin x+\cos x}{\sin x}\right)^3}d(-\cot x)\)
\(=\int ^{\frac{\pi}{2}}_{\frac{\pi}{4}}\frac{1}{(\cot x+1)^3}d(-\cot x)=-\int ^{\frac{\pi}{2}}_{\frac{\pi}{4}}\frac{d(\cot x+1)}{(\cot x+1)^3}\)
\(=\left.\begin{matrix} \frac{\pi}{2}\\ \frac{\pi}{4}\end{matrix}\right|\frac{1}{2(\cot x+1)^2}=\frac{3}{8}\)
\(B=\int ^{\frac{\pi}{4}}_{0}\frac{\sin x+\cos x-\cos x}{(\sin x+\cos x)^3}dx\)\(=\int ^{\frac{\pi}{4}}_{0}\frac{ 1}{(\sin x+\cos x)^2}dx-\int ^{\frac{\pi}{4}}_{0}\frac{\cos x}{(\sin x+\cos x)^3}dx\)
\(=\int ^{\frac{\pi}{4}}_{0}\frac{1}{\left(\frac{\sin x+\cos x}{\cos x}\right)^2}.\frac{dx}{\cos ^2x}-\int ^{\frac{\pi}{4}}_{0}\frac{1}{\left(\frac{\sin x+\cos x}{\cos^3 x}\right)^3}.\frac{dx}{\cos ^2x}\)
\(=\int ^{\frac{\pi}{4}}_{0}\frac{d(\tan x)}{(\tan x+1)^2}-\int ^{\frac{\pi}{4}}_{0}\frac{d(\tan x)}{(\tan x+1)^3}\)
\(=\int ^{\frac{\pi}{4}}_{0}\frac{d(\tan x+1)}{(\tan x+1)^2}-\int ^{\frac{\pi}{4}}_{0}\frac{d(\tan x+1)}{(\tan x+1)^3}\)
\(=\left.\begin{matrix} \frac{\pi}{4}\\ 0\end{matrix}\right|\frac{-1}{\tan x+1}+\left.\begin{matrix} \frac{\pi}{4}\\ 0\end{matrix}\right|\frac{1}{2(\tan x+1)^2}=\frac{1}{8}\)
Do đó: \(\int ^{\frac{\pi}{2}}_{0}\frac{\sin x}{(\sin x+\cos x)^3}dx=\frac{3}{8}+\frac{1}{8}=\frac{1}{2}\)
Sở dĩ phải chia tích phân thành tổng nhỏ như vậy là do khi ta thực hiện chia sin x xuống dưới mẫu thì hàm số không liên tục trong đoạn \([\frac{\pi}{2}; 0]\)