K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Sửa đề: \(B=\left(1+\dfrac{1}{1\cdot3}\right)\cdot\left(1+\dfrac{1}{2\cdot4}\right)\cdot...\cdot\left(1+\dfrac{1}{2022\cdot2024}\right)\)

\(=\left(1+\dfrac{1}{2^2-1}\right)\cdot\left(1+\dfrac{1}{3^2-1}\right)\cdot...\cdot\left(1+\dfrac{1}{2023^2-1}\right)\)

\(=\dfrac{2^2}{2^2-1}\cdot\dfrac{3^2}{3^2-1}\cdot...\cdot\dfrac{2023^2}{2023^2-1}\)

\(=\dfrac{2\cdot3\cdot...\cdot2023}{1\cdot2\cdot...\cdot2022}\cdot\dfrac{2\cdot3\cdot....\cdot2023}{3\cdot4\cdot...\cdot2024}\)

\(=\dfrac{2023}{1}\cdot\dfrac{2}{2024}=\dfrac{2023}{1012}\)

19 tháng 6 2018

a,9 phần 2

19 tháng 6 2018

b)\(\frac{1}{9}.\frac{2}{145}-4\frac{1}{3}.\frac{2}{145}+\frac{2}{145}\)

\(=\frac{2}{145}.\left(\frac{1}{9}-\frac{13}{3}+1\right)\)

\(=\frac{2}{145}.\left(-\frac{29}{9}\right)\)

\(=\frac{-2}{45}\)

18 tháng 6 2018

Giải:

a) \(\dfrac{1}{3}x+\dfrac{1}{5}-\dfrac{1}{2}x=1\dfrac{1}{4}\)

\(\Leftrightarrow\dfrac{1}{5}-\dfrac{1}{6}x=\dfrac{5}{4}\)

\(\Leftrightarrow\dfrac{1}{6}x=\dfrac{-21}{20}\)

\(\Leftrightarrow x=\dfrac{-63}{10}\)

Vậy ...

b) \(\dfrac{3}{2}\left(x+\dfrac{1}{2}\right)-\dfrac{1}{8}x=\dfrac{1}{4}\)

\(\Leftrightarrow\dfrac{3}{2}x+\dfrac{3}{4}-\dfrac{1}{8}x=\dfrac{1}{4}\)

\(\Leftrightarrow\dfrac{11}{8}x=\dfrac{-1}{2}\)

\(\Leftrightarrow x=\dfrac{-4}{11}\)

Vậy ...

Các câu sau làm tương tự câu b)

15 tháng 10 2018

cảm ơn bạn rất nhiều

Bài 1:

a: \(=\dfrac{1}{2}-\dfrac{7}{13}-\dfrac{1}{3}-\dfrac{6}{13}+\dfrac{1}{3}+\dfrac{4}{3}=\dfrac{4}{3}-1+\dfrac{1}{2}=\dfrac{1}{3}+\dfrac{1}{2}=\dfrac{5}{6}\)

b: \(=\dfrac{3}{4}+\dfrac{2}{5}+\dfrac{1}{9}-1-\dfrac{2}{5}+\dfrac{5}{4}=2-1+\dfrac{1}{9}=\dfrac{10}{9}\)

c: \(=\left(\dfrac{-3}{2}\cdot\dfrac{4}{3}\right)\cdot\dfrac{-9}{2}-\dfrac{1}{2}=9-\dfrac{1}{2}=8.5\)

30 tháng 5 2018

Câu 1: Mình chỉnh sửa lại đầu bài của bạn nha. Không biết có đúng không. Nếu để đầu bài như bạn thì mình không làm ra được. Mog góp ý !!!!

Áp dụng t/c DTSBN ta có:

\(\dfrac{x}{y+z+1}=\dfrac{y}{x+z+1}=\dfrac{z}{x+y-2}=x+y+z\)

\(=\dfrac{x+y+x}{y+z+1+x+z+1+x+y-2}=\dfrac{x+y+x}{2x+2y+2z}=\dfrac{1}{2}\)

=>\(\dfrac{x}{y+z+1}=\dfrac{1}{2}\left(1\right)\)

=>\(\dfrac{y}{x+z+1}=\dfrac{1}{2}\left(2\right)\)

=>\(\dfrac{z}{x+y-2}=\dfrac{1}{2}\left(3\right)\)

=> x+y+z = 1/2 (4)

Ta có : Từ (1) => 2x = y+z+1 kết hợp (4)

=> 2x = 1/2-x+1

=> 3x = 3/2 => x=1/2

Ta có: Từ (2) => 2y = x+z+1

=> 2y + y = x+y+z+1

=> 3y = 1/2+1 (theo 4) => 3y=3/2

=> y=1/2

Ta có : Từ (4) => x+y+z=1/2

=>1/2 + 1/2 +z = 1/2

=> z=-1/2

Vậy ( x;y;z)=(1/2;1/2;-1/2)

a: \(\Leftrightarrow-\dfrac{2}{3}\cdot\dfrac{4-6-9}{12}\ge x\ge-\dfrac{13}{3}\cdot\dfrac{3-1}{6}\)

\(\Leftrightarrow-\dfrac{2}{3}\cdot\dfrac{-11}{12}\ge x\ge\dfrac{-13}{3}\cdot\dfrac{1}{3}\)

\(\Leftrightarrow\dfrac{22}{36}\ge x\ge\dfrac{-13}{9}\)

mà x là số nguyên

nên \(x\in\left\{0;-1\right\}\)

b: \(\Leftrightarrow\dfrac{21}{100}+\dfrac{75}{100}-\dfrac{220}{100}>=2x-1>=-3-\dfrac{1}{2}+3+\dfrac{1}{5}\)

\(\Leftrightarrow\dfrac{-124}{100}\ge2x-1\ge\dfrac{-3}{10}\)

\(\Leftrightarrow-\dfrac{124}{100}+1\ge2x>=\dfrac{-3}{10}+1\)

\(\Leftrightarrow\dfrac{-3}{25}\ge2x\ge\dfrac{7}{10}\)(vô lý)

=>x không có giá trị

c: \(\Leftrightarrow43+\dfrac{1}{2}-39-\dfrac{1}{5}\le-3x+4\le9+\dfrac{1}{5}+50+\dfrac{1}{7}\)

\(\Leftrightarrow3+\dfrac{3}{10}\le-3x+4\le59+\dfrac{12}{35}\)

\(\Leftrightarrow\dfrac{33}{10}-4\le-3x\le59+\dfrac{12}{35}-4\)

\(\Leftrightarrow\dfrac{-7}{10}\le-3x\le\dfrac{1937}{35}\)

\(\Leftrightarrow\dfrac{7}{30}\ge x\ge-\dfrac{1937}{105}\)

mà x là số nguyên

nên \(x\in\left\{0;-1;-2;...;-18\right\}\)

 

14 tháng 6 2017

a)\(\dfrac{x+1}{10}+\dfrac{x+1}{11}+\dfrac{x+1}{12}=\dfrac{x+1}{13}+\dfrac{x+1}{14}\)

\(\Rightarrow\left(x+1\right)\left(\dfrac{1}{10}+\dfrac{1}{11}+\dfrac{1}{12}\right)=\left(x+1\right)\left(\dfrac{1}{13}+\dfrac{1}{14}\right)\)

\(\Rightarrow\left(x+1\right)\left(\dfrac{1}{10}+\dfrac{1}{11}+\dfrac{1}{12}-\dfrac{1}{13}-\dfrac{1}{14}\right)=0\)

\(\Rightarrow x+1=0\)

\(\Rightarrow x=-1\)

b)\(\dfrac{x+4}{2014}+\dfrac{x+3}{2015}=\dfrac{x+2}{2016}+\dfrac{x+1}{2017}\)

\(1+\dfrac{x+4}{2014}+1+\dfrac{x+3}{2015}=1+\dfrac{x+2}{2016}+1+\dfrac{x+1}{2017}\)

\(\Rightarrow\dfrac{x+2018}{2014}+\dfrac{x+2018}{2015}=\dfrac{x+2018}{2016}+\dfrac{x+2018}{2017}\)

Giải tương tự câu a ta được \(x=-2018\)

14 tháng 6 2017

a) \(\dfrac{x+1}{10}+\dfrac{x+1}{11}+\dfrac{x+1}{12}=\dfrac{x+1}{13}+\dfrac{x+1}{14}\)

\(\Rightarrow6006\left(x+1\right)+5460\left(x+1\right)+5005\left(x+1\right)=4620\left(x+1\right)+4290\left(x+1\right)\)

\(\Leftrightarrow\left(6006+5460+5005\right)\cdot\left(x+1\right)=\left(4620+4290\right)\cdot\left(x+1\right)\)

\(\Leftrightarrow16471\left(x+1\right)=8910\left(x+1\right)\)

\(\Leftrightarrow16471x+16471=8910x+8910\)

\(\Leftrightarrow16471x-8910x=8910-16471\)

\(\Leftrightarrow7561x=-7561\)

\(\Rightarrow x=-1\)

Vậy \(x=-1\)

b) \(\dfrac{x+4}{2014}+\dfrac{x+3}{2015}=\dfrac{x+2}{2016}+\dfrac{x+1}{2017}\)

\(\Rightarrow4096749040\left(x+4\right)+4094735904\left(x+3\right)=4092704785\left(x+2\right)+4090675680\left(x+1\right)\)

\(\Leftrightarrow4096769040x+16387076160+4094735904x+12284207712=4092704785x+8185409570+4090675680x+4090675680\)

\(\Leftrightarrow8191504944x+28671283872=8183380465x+12276085250\)

\(\Leftrightarrow8191504944x-8183380465x=12276085250-28671283872\)

\(\Leftrightarrow8124479x=-16395198622\)

\(\Rightarrow x=-2018\)

Vậy \(x=-2017\)

P/s: đây không phải cách làm tối ưu, vì vậy mình nghĩ bạn nên tham khảo từ các bài làm khác nhé!

Bài 1: 

a: \(=17+\dfrac{2}{31}-\dfrac{15}{17}-6-\dfrac{2}{31}=11-\dfrac{15}{17}=\dfrac{172}{17}\)

b: \(=31+\dfrac{6}{13}+5+\dfrac{9}{41}-36-\dfrac{9}{41}-36-\dfrac{6}{13}\)

=36

c: \(=27+\dfrac{51}{59}-7-\dfrac{51}{59}+\dfrac{1}{3}=20+\dfrac{1}{3}=\dfrac{61}{3}\)