K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 3 2017

Ta viết lại như sau ;

a) \(\forall x\in R:x\cdot1=x\)

b) \(\exists n\in R:n+n=0\)

c) \(\forall x\in R:x+\left(-x\right)=0\)

30 tháng 4 2019

a) ∀ x ∈ R: x.1 = x

b) ∃ a ∈ R: a + a = 0

c) ∀ x ∈ R: x + (-x) = 0

1 tháng 2 2021

Có : \(P=4x+\dfrac{16}{x^2}=2x+2x+\dfrac{16}{x^2}\)

- AD AMGM : \(2x+2x+\dfrac{16}{x^2}\ge3\sqrt[3]{\dfrac{2x.2x.16}{x^2}}=12\)

- Dấu " = " xảy ra \(\Leftrightarrow2x=\dfrac{16}{x^2}\)

\(\Leftrightarrow2x^3=16\)

\(\Leftrightarrow x=2\) ( TM )

Vậy ....

( Chắc đề như vầy :vvv )

1 tháng 2 2021

Dùng cái này đánh công thức nha bạn

30 tháng 3 2017

8

18 tháng 5 2017

TenAnh1 TenAnh1 A = (-4.3, -5.94) A = (-4.3, -5.94) A = (-4.3, -5.94) B = (11.06, -5.94) B = (11.06, -5.94) B = (11.06, -5.94) D = (10.84, -5.94) D = (10.84, -5.94) D = (10.84, -5.94)
Số các véc tơ khác \(\overrightarrow{0}\) bằng véc tơ \(\overrightarrow{OC}\) có điểm đầu và điểm cuối là đỉnh lục giác là:
\(\overrightarrow{AB};\overrightarrow{BA};\overrightarrow{FO};\overrightarrow{OF};\overrightarrow{ED};\overrightarrow{DE};\overrightarrow{FC};\overrightarrow{CF}\).
Có 8 véc tơ.

9 tháng 3 2018

Đáp án: B

Đề kiểm tra 45 phút Hình học 10 Chương 3 có đáp án (Đề 3)

Gọi góc giữa hai đường thẳng là α

Đề kiểm tra 45 phút Hình học 10 Chương 3 có đáp án (Đề 3) Đề kiểm tra 45 phút Hình học 10 Chương 3 có đáp án (Đề 3)

⇒ α = 45 °

19 tháng 12 2019

Ta có d 2 : 3 x − 2 y + 1 = 0   ⇔ 6 x − 4 y + 2 = 0  

Ta có điểm A(-1; 1) thuộc đường thẳng d2,.

Vì hai đường thẳng d1 và d2 song song với nhau nên ta có:

d ( d 1 ;    d 2 ) = d ( A ;    d 1 ) =    6. ( − 1 )   − 4. ( − 1 ) + 5 6 2 + ( − 4 ) 2 =   3 52

ĐÁP ÁN D

17 tháng 6 2017

Ta có hệ số a= 5; b= 0 và c= -11 nên bán kính là R= a 2 + b 2 - c = 6

Chọn A.

5 tháng 6 2019

Ta viết lại phương trình đường tròn: x2+ y2-2x + 3y -3= 0

Suy ra a= 1; b= -1,5 và c= -3 và bán kính R= 1 2 + 1 , 5 2 + 3 2 = 5 2

Chọn A.

16 tháng 5 2017

a) \(\forall x\in\mathbb{R}:x+\left(-x\right)=0\) (đúng)

Phủ định là \(\exists x\in\mathbb{R}:x+\left(-x\right)\ne0\) (sai)

b) \(\forall x\in\mathbb{R}\)\ \(\left\{0\right\}:x.\dfrac{1}{x}=1\) (đúng

Phủ định là \(\exists x\in\mathbb{R}\)\ \(\left\{0\right\}:x.\dfrac{1}{x}\ne1\) (sai)

c) \(\exists x\in R:x=-x\) (đúng)

Phủ định là \(\forall x\in\mathbb{R}:x\ne-x\) (sai)