Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(a=\frac{1}{x};b=\frac{1}{y};c=\frac{1}{z}\)thì \(x,y,z>0\)và ta cần chứng minh \(\frac{x}{\sqrt{3zx+yz}}+\frac{y}{\sqrt{3xy+zx}}+\frac{z}{\sqrt{3yz+xy}}\ge\frac{3}{2}\)\(\Leftrightarrow\frac{x^2}{x\sqrt{3zx+yz}}+\frac{y^2}{y\sqrt{3xy+zx}}+\frac{z^2}{z\sqrt{3yz+xy}}\ge\frac{3}{2}\)
Áp dụng BĐT Cauchy-Schwarz dạng phân thức, ta có: \(\frac{x^2}{x\sqrt{3zx+yz}}+\frac{y^2}{y\sqrt{3xy+zx}}+\frac{z^2}{z\sqrt{3yz+xy}}\ge\)\(\frac{\left(x+y+z\right)^2}{x\sqrt{3zx+yz}+y\sqrt{3xy+zx}+z\sqrt{3yz+xy}}\)
Áp dụng BĐT Cauchy-Schwarz, ta có: \(x\sqrt{3zx+yz}+y\sqrt{3xy+zx}+z\sqrt{3yz+xy}\)\(=\sqrt{x}.\sqrt{3zx^2+xyz}+\sqrt{y}.\sqrt{3xy^2+xyz}+\sqrt{y}.\sqrt{3yz^2+xyz}\)\(\le\sqrt{\left(x+y+z\right)\left[3\left(xy^2+yz^2+zx^2+xyz\right)\right]}\)
Ta cần chứng minh \(\sqrt{\left(x+y+z\right)\left[3\left(xy^2+yz^2+zx^2+xyz\right)\right]}\le\frac{2}{3}\left(x+y+z\right)^2\)
\(\Leftrightarrow\left(x+y+z\right)^4\ge\frac{9}{4}\left(x+y+z\right)\left[3\left(xy^2+yz^2+zx^2+xyz\right)\right]\)
\(\Leftrightarrow\left(x+y+z\right)^3\ge\frac{27}{4}\left(xy^2+yz^2+zx^2+xyz\right)\)(*)
Không mất tính tổng quát, giả sử \(y=mid\left\{x,y,z\right\}\)thì khi đó \(\left(y-x\right)\left(y-z\right)\le0\Leftrightarrow y^2+zx\le xy+yz\)
\(\Leftrightarrow xy^2+zx^2\le x^2y+xyz\Leftrightarrow xy^2+yz^2+zx^2+xyz\le\)\(x^2y+yz^2+2xyz=y\left(z+x\right)^2=4y.\frac{z+x}{2}.\frac{z+x}{2}\)
\(\le\frac{4}{27}\left(y+\frac{z+x}{2}+\frac{z+x}{2}\right)^3=\frac{4\left(x+y+z\right)^3}{27}\)
Như vậy (*) đúng
Đẳng thức xảy ra khi a = b = c
\(\left(a+3b\right)\left(b+3a\right)\le\left(\frac{4a+4b}{2}\right)^2=\left(2a+2b\right)^2\)
=>\(\frac{1}{2}\sqrt{\left(a+3b\right)\left(b+3a\right)}\le\frac{1}{2}\left(2a+2b\right)=a+b\)
Mình làm phần dễ nhất rồi, còn lại của bạn đó ^^
Sang học 24 tìm ai tên Perfect Blue nhé t làm bên đó rồi đưa link thì lỗi ==" , tìm tên đăng nhập springtime ấy
Đặt \(x=a^3;y=b^3;z=c^3\), khi đó \(xyz=1\). Bất đẳng thức cần chứng minh trở thành:
\(\left(x+y\right)\left(y+z\right)\left(z+x\right)\ge2\sqrt{2\left(2+xy+yz+zx+x+y+z\right)}\)
Ta viết lại bất đẳng thức như sau:
\(\left(x+y\right)\left(y+z\right)\left(z+x\right)\ge2\sqrt{2\left(2+xy+yz+zx+x+y+z\right)}\)
\(\Leftrightarrow\left(x+y\right)\left(y+z\right)\left(z+x\right)\ge2\sqrt{2\left(x+1\right)\left(y+1\right)\left(z+1\right)}\)
Bình phương 2 vế ta được:
\(\left[\left(x+y\right)\left(y+z\right)\left(z+x\right)\right]^2\ge8\left(x+1\right)\left(y+1\right)\left(z+1\right)\)
Áp dụng bất đẳng thức Bunhiacopxki ta được \(\left(x+y\right)^2\left(x+\frac{1}{y}\right)^2\ge x+1^4\)hay ta được bất đẳng thức:
\(\left(x+y\right)^2\left(x+xz\right)^2\ge\left(x+1\right)^4\Leftrightarrow x^2\left(x+y\right)^2\left(1+z\right)^2\ge\left(x+1\right)^4\)
Tương tự ta được các bất đẳng thức:
\(y^2\left(y+z\right)^2\left(1+x\right)^2\ge\left(y+1\right)^4;z^2\left(z+x\right)^2\left(1+y\right)^2\ge\left(z+1\right)^4\)
Nhân theo vế các bất đẳng thức trên, ta được:
\(x^2y^2z^2\left(x+y\right)^2\left(y+z\right)^2\left(z+x\right)^2\left(1+x\right)^2\left(1+y\right)^2\left(1+z\right)^2\)
\(\ge\left(x+1\right)^4\left(y+1\right)^4\left(z+1\right)^4\)
Hay:
\(\left(x+y\right)^2\left(y+z\right)^2\left(z+x\right)^2\ge\left(1+x\right)^2\left(1+y\right)^2\left(1+z\right)^2\)
Mặt khác, ta lại có:
\(\left(1+x\right)^2\left(1+y\right)^2\left(1+z\right)^2\ge\left(1+x\right)\left(1+y\right)\left(1+z\right)\cdot8\sqrt{xyz}\)
\(=8\left(1+x\right)\left(1+y\right)\left(1+z\right)\)
Do đó ta được bất đẳng thức:
\(\left[\left(x+y\right)\left(y+z\right)\left(z+x\right)\right]^2\ge8\left(x+1\right)\left(y+1\right)\left(z+1\right)\)
Bất đẳng thức được chứng minh, dấu đẳng thức xảy ra khi \(a=b=c\)
Ta có:
\(\sqrt{ab}+\sqrt{bc}+\sqrt{ca}=\frac{\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)^2-\left(a+b+c\right)}{2}=\frac{9-5}{2}=2\)
Suy ra \(a+2=a+\sqrt{ab}+\sqrt{bc}+\sqrt{ca}=\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{c}+\sqrt{a}\right)\)
Tương tự, ta áp dụng với hai biến thực dương còn lại, thu được:
\(\hept{\begin{cases}b+2=\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{b}+\sqrt{c}\right)\\c+2=\left(\sqrt{b}+\sqrt{c}\right)\left(\sqrt{c}+\sqrt{a}\right)\end{cases}}\)
Khi đó, ta nhân vế theo vế đối với ba đẳng thức trên, nhận thấy: \(\left(a+2\right)\left(b+2\right)\left(c+2\right)=\left[\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{b}+\sqrt{c}\right)\left(\sqrt{c}+\sqrt{a}\right)\right]^2\)
\(\Rightarrow\) \(\sqrt{\left(a+2\right)\left(b+2\right)\left(c+2\right)}=\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{b}+\sqrt{c}\right)\left(\sqrt{c}+\sqrt{a}\right)\) (do \(a,b,c>0\) )
nên \(\frac{\sqrt{a}}{a+2}+\frac{\sqrt{b}}{b+2}+\frac{\sqrt{c}}{c+2}=\frac{\sqrt{a}\left(\sqrt{b}+\sqrt{c}\right)+\sqrt{b}\left(\sqrt{c}+\sqrt{a}\right)+\sqrt{c}\left(\sqrt{a}+\sqrt{b}\right)}{\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{b}+\sqrt{c}\right)\left(\sqrt{c}+\sqrt{a}\right)}\)
\(=\frac{2\left(\sqrt{ab}+\sqrt{ca}+\sqrt{ca}\right)}{\sqrt{\left(a+2\right)\left(b+2\right)\left(c+2\right)}}=\frac{4}{\sqrt{\left(a+2\right)\left(b+2\right)\left(c+2\right)}}\)
\(\Rightarrow\) \(đpcm\)
\(\left(a+b\right)\left(b+c\right)\left(c+a\right)+abc\)
\(=abc+a^2b+ab^2+a^2c+ac^2+b^2c+bc^2+abc+abc\)
\(=\left(a+b+c\right)\left(ab+bc+ca\right)\)( phân tích nhân tử các kiểu )
\(\Rightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge\left(a+b+c\right)\left(ab+bc+ca\right)-abc\left(1\right)\)
\(a+b+c\ge3\sqrt[3]{abc};ab+bc+ca\ge3\sqrt[3]{a^2b^2c^2}\Rightarrow\left(a+b+c\right)\left(ab+bc+ca\right)\ge9abc\)
\(\Rightarrow-abc\ge\frac{-\left(a+b+c\right)\left(ab+bc+ca\right)}{9}\)
Khi đó:\(\left(a+b+c\right)\left(ab+bc+ca\right)-abc\)
\(\ge\left(a+b+c\right)\left(ab+bc+ca\right)-\frac{\left(a+b+c\right)\left(ab+bc+ca\right)}{9}\)
\(=\frac{8\left(a+b+c\right)\left(ab+bc+ca\right)}{9}\left(2\right)\)
Từ ( 1 ) và ( 2 ) có đpcm
minh nghi vay
Áp dụng BĐT cô si ta có :
ab+bc+ca≥33√ab.bc.ca=3ab+bc+ca≥3ab.bc.ca3=3
⇒BĐT⇒BĐTcần CMCM: 3>9a+b+c⇔a+b+c>33>9a+b+c⇔a+b+c>3
Mà a,b,c > 0 => abc > 0
⇒a+b+c≥33√abc≥3⇒a+b+c≥3abc3≥3
Dấu "=" xảy ra ⇔\hept{a=b=ca2=b2=c2=1⇔a=b=c=1
Cóp vừa thôi:)) huymatacc